Advertisement

Ascorbate increases the number of low density lipoprotein receptors in cultured arterial smooth muscle cells

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Receptor-mediated catabolism of low density lipoprotein (LDL) was increased 2–3-fold in down-regulated smooth muscle cells when the culture medium was supplemented with physiological concentrations of sodium ascorbate for 24 h. The enhanced, degradation of LDL was associated with increased LDL receptor activity and LDL uptake. The increase in receptor activity was rapid, transient and inhibited by cycloheximide. Kinetic analysis of saturable binding indicated that ascorbate increased the number of LDL receptors but had no effect on the affinity of the lipoprotein for its receptor. Our data indicate that ascorbic acid may play a role in the regulation of plasma cholesterol levels by influencing LDL receptor number.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ginter E.
        • Bobek P.
        • Babala J.
        • Jakubovsky J.
        • Zaviacic M.
        • Lojda Z.
        Hanck A. Ritzel G. Vitamin C — Recent Advances and Aspects in Virus Diseases. Cancer and Lipid Metabolism. Hans Huber, Bern, Stuttgart Vienna1979: 55
        • Turley S.D.
        • West C.E.
        • Horton B.J.
        The role of ascorbic acid in the regulation of cholesterol metabolism and in the pathogenesis of atherosclerosis.
        Atherosclerosis. 1976; 24: 1
        • Ginter E.
        • C̆erveň J.
        • Nemec R.
        • Mikuš L.
        Lowered cholesterol catabolism in guinea pigs with chronic ascorbic acid deficiency.
        Amer. J. Clin. Nutr. 1971; 24: 1238
        • Holloway D.E.
        • Rivers J.M.
        Influence of chronic ascorbic acid deficiency and excessive ascorbic acid intake on bile acid metabolism and bile composition in the guinea pig.
        J. Nutr. 1981; 111: 412
        • Nambisan B.
        • Kurup P.A.
        Ascorbic acid and glucosaminoglycan and lipid metabolism in guinea pigs fed normal and atherogenic diets.
        Atherosclerosis. 1975; 22: 447
        • Sulkin N.M.
        • Sulkin D.F.
        Tissue changes induced by marginal vitamin C deficiency.
        Ann. N.Y. Acad. Sci. 1975; 258: 317
        • Ginter E.
        • Kubec F.J.
        • Vozir J.
        • Bobek P.
        Natural hypocholesterolemic agent — Pectin plus ascorbic acid.
        Int. J. Vitam. Nutr. Res. 1979; 49: 406
        • McIntosch G.H.
        • Richmond W.
        • Himsworth R.L.
        Vitamin C deficiency and hypercholesterolaemia in marmoset monkeys.
        Nutr. Rep. Int. 1981; 23: 237
        • Peterson V.E.
        • Crapo P.A.
        • Weiniger J.
        • Ginsberg H.
        • Olefsky J.
        Quantification of plasma cholesterol and triglyceride levels in hypercholesterolemic subjects receiving ascorbic acid supplements.
        Amer. J. Clin. Nutr. 1975; 28: 584
        • Brown M.S.
        • Kovanen P.T.
        • Goldstein J.L.
        Regulation of plasma cholesterol by lipoprotein receptors.
        Science. 1981; 212: 628
        • Ross R.J.
        Smooth muscle cell, Part 2 (Growth of smooth muscle in culture and formation of elastic fibers).
        J. Cell Biol. 1971; 50: 172
        • Aulinskas T.H.
        • Van der Westhuyzen D.R.
        • Bierman E.L.
        • Gevers W.
        • Coetzee G.A.
        Retro-endocytosis of low density lipoprotein by cultured bovine aortic smooth muscle cells.
        Biochim. Biophys. Acta. 1981; 664: 255
        • Jones P.A.
        • Scott-Burden T.
        • Gevers W.
        Glycoprotein, elastin and collagen secretion by rat smooth muscle cells.
        in: Proc. Nat. Acad. Sci. (USA). 76. 1979: 353
        • Ralph P.
        • Prichard J.
        • Cohn M.
        Reticulum cell sarcoma — An effector cell in antibody-dependent cell-mediated immunity.
        J. Immunol. 1975; 114: 898
        • Reznikoff C.A.
        • Brankow D.W.
        • Heidelberger C.
        Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division.
        Cancer Res. 1973; 33: 3231
        • chung B.H.
        • Wilkinson T.
        • Geer J.C.
        • Segrest J.P.
        Preparative and quantitative isolation of plasma lipoproteins — Rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor.
        J. Lipid Res. 1980; 21: 284
        • Bilheimer D.W.
        • Eisenberg S.
        • Levy R.J.
        Metabolism of very low density lipoproteins, Part 1 (Preliminary in vitro and in vivo observations).
        Biochim. Biophys. Acta. 1972; 260: 212
        • Van der Westhuyzen D.R.
        • Gevers W.
        • Coetzee G.A.
        Cathepsin D-dependent initiation of the hydrolysis by lysosomal enzymes of apoprotein B from low density lipoproteins.
        Europ. J. Biochem. 1980; 112: 153
        • Bierman E.L.
        • Stein O.
        • Stein Y.
        Lipoprotein uptake and metabolism by rat aortic smooth muscle cells in tissue culture.
        Circ. Res. 1974; 35: 136
        • Lowry O.-H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurements with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265
        • Goldstein J.L.
        • Basu S.K.
        • Brunschede H.
        • Brown M.S.
        Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans.
        Cell. 1976; 7: 85
        • Scatchard G.
        The attractions of proteins for small molecules and ions.
        Ann. N.Y. Acad. Sci. 1949; 51: 660
        • Oram J.F.
        • Albers J.J.
        • Bierman E.L.
        Rapid regulation of the activity of the low density lipoprotein receptor of cultured human fibroblasts.
        J. Biol. Chem. 1980; 255: 475
        • Koch P.
        • Sidloi M.
        • Tonks D.B.
        Estimation of serum ascorbic acid in patients and the effect of ascorbic acid and its oxidation products on SMA 12/60 parameters.
        Clin. Biochem. 1980; 13: 73
        • Bierman E.L.
        • Albers J.
        Regulation of low density lipoprotein receptor activity by cultured human arterial smooth muscle cells.
        Biochim. Biophys. Acta. 1977; 488: 152
        • Fisher W.R.
        • Hammond M.G.
        • Warmke G.L.
        Measurements of the molecular weight variability of plasma low density lipoproteins among normals and subjects with hyper-β-lipoproteinemia — Demonstration of macromolecular heterogeneity.
        Biochemistry. 1972; 11: 519
        • Brown M.S.
        • Goldstein J.L.
        Regulation of the activity of low density lipoprotein receptors in human fibroblasts.
        Cell. 1975; 6: 307
        • Murad S.
        • Grove D.
        • Lindberg K.A.
        • Reynolds G.
        • Sivarajah A.
        • Pinnell S.R.
        Regulation of collagen synthesis by ascorbic acid.
        in: Proc. Nat. Acad. Sci. (USA). 78. 1981: 2879
        • Ross R.
        • Benditt E.P.
        Wound healing and collagen formation, Part 4 (Distortion of ribosomal patterns of fibroblasts in scurvy).
        J. Cell Biol. 1964; 22: 365
        • Miller N.E.
        • Yin Y.A.
        Effects of microtubule-disruptive and membrane stabilizing agents on low density lipoprotein metabolism by cultured human fibroblasts.
        Biochim. Biophys. Acta. 1979; 552: 428
        • Ostlund Jr., R.E.
        • Pfleger B.
        • Schonfeld G.
        Role of microtubules in low density lipoprotein processing by cultured cells.
        J. Clin. Invest. 1979; 63: 75
        • Boxer L.A.
        • Albertini D.F.
        • Baehner R.L.
        • Oliver J.M.
        Impaired microtubule assembly and polymorphonuclear leucocyte function in the Chediak-Higashi syndrome correctable by ascorbic acid.
        Brit. J. Haematol. 1979; 43: 207
        • Coetzee G.A.
        • Stein O.
        • Stein Y.
        Modulation by sodium ascorbate of the effect of chloroquine on low density lipoprotein retention and degradation in cultured human skin fibroblasts.
        Atherosclerosis. 1979; 32: 277
        • Hui D.Y.
        • Innerarity T.L.
        • Mahley R.W.
        Lipoprotein binding to canine hepatic membranes.
        J. Biol. Chem. 1981; 256: 5646
        • Kovanen R.T.
        • Bilheimer D.W.
        • Goldstein J.L.
        • Jaramillo J.J.
        • Brown M.S.
        Regulatory role for hepatic low density lipoprotein receptors in vivo in the dog.
        in: Proc. Nat. Acad. Sci. (USA). 78. 1981: 1194
        • Brown M.S.
        • Faust J.R.
        • Goldstein J.L.
        • Kaneko I.
        • Endo A.
        Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase.
        J. Biol. Chem. 1978; 253: 1121