Advertisement

Joint occurrence of collagen mRNA containing cells and macrophages in human atherosclerotic vessels

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Cells with enhanced levels of collagen type I and III mRNA were identified and localized in frozen tissue sections from samples of human atherosclerotic renal and common iliac arteries by in situ hybridization using complementary 35S-labeled RNA probes. Serial sections were immunohistochemically stained for smooth muscle cells, monocytes, and differentiated macrophages. In the fibromuscular intima and in the fibrous plaques, cells with enhanced transcriptional activity were located mainly in the vicinity of differentiated macrophages. In three patients, lack of enhanced transcriptional activity in a proliferated intima was connected with complete absence of macrophages, thus indicating a quiescent stage of atherosclerosis. Immunohistochemical staining of serial sections for smooth muscle cells (SMC) revealed the presence of this cell type throughout the proliferated intima in atherosclerotic arteries including those areas in which enhanced collagen mRNAs were detected. The present results support the idea that macrophages play an important role in the activation of collagen synthesis in SMC of atherosclerotic vessel walls.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Campbell G.R.
        • Campbell J.H.
        Smooth muscle phenotypic changes in arterial wall homeostasis: Implications for the pathogenesis of atherosclerosis.
        Exp. Mol. Pathol. 1985; 42: 139
        • Nilsson J.
        Growth factors and the pathogenesis of atherosclerosis.
        Atherosclerosis. 1986; 62: 185
        • Ross R.
        • Raines E.
        • Bowen-Pope D.
        Growth factors from platelets, monocytes, and endothelium: Their role in cell proliferation.
        in: Baserga R. B 707L Cell Proliferation, Cancer and Cancer Therapy. New York Acad. Sci, 1982: 18
        • Schwartz C.J.
        • Valente A.J.
        • Sprague E.A.
        • Kelley J.L.
        • Suenram C.A.
        • Graves D.T.
        • Rozek M.M.
        • Edwards E.N.
        • Delgado R.
        Monocyte-macrophage participation in atherogenesis: Inflammatory components of pathogenesis.
        Sem. Thromb. Hemost. 1986; 12: 79
        • Mitchinson M.J.
        • Ball R.Y.
        Macrophages and atherogenesis.
        The Lancet. 1987; ii: 146
        • Hayashi M.
        • Ninomiya Y.
        • Parsons J.
        • Hayashi K.
        • Olsen B.R.
        • Trelstad R.L.
        Differential localization of mRNAs of collagen types I and II in chick fibroblasts, chondrocytes, and corneal cells by in situ hybridization using cDNA probes.
        J. Cell Biol. 1986; 102: 2302
        • Kosher R.A.
        • Kulyk W.M.
        • Gay S.W.
        Collagen gene expression during limb cartilage differentiation.
        J. Cell Biol. 1986; 102: 1151
        • Nah H.-D.
        • Rodgers B.J.
        • Kulyk W.M.
        • Kream B.E.
        • Kosher R.A.
        • Upholt W.B.
        In situ hybridization analysis of the expression of the type II collagen gene in the developing chicken limb bud.
        CoIl. Rel. Res. 1988; 8: 277
        • Sandberg M.
        • Vuorio E.
        Localization of types I, II, and III collagen mRNAs in developing human skeletal tissues by in situ hybridization.
        J. Cell. Biol. 1987; 104: 1077
        • Scharffetter K.
        • Lankat-Buttgereit B.
        • Krieg T.
        Localization of collagen mRNA in normal and scleroderma skin by in-situ hybridization.
        Eur. J. Clin. Invest. 1988; 18: 9
        • Kähäri V.M.
        • Sandberg M.
        • Kalimo H.
        • Vuorio T.
        • Vuorio E.
        Identification of fibroblasts responsible for increased collagen production in localized scleroderma by in situ hybridization.
        J. Invest. Dermatol. 1988; 90: 664
        • Milani S.
        • Herbst H.
        • Schuppan D.
        • Hahn E.G.
        • Stein H.
        In situ hybridization for procollagen type-I, typeIII and type-IV messenger RNA in normal and fibrotic rat liver - evidence for predominant expression in nonparenchymal liver cells.
        Hepatology. 1989; 10: 84
        • Jaeger E.
        • Rust S.
        • Scharffetter K.
        • Roessner A.
        • Winter J.
        • Buchholz B.
        • Althaus M.
        • Rauterberg J.
        Localization of cytoplasmic collagen mRNA in human aortic coarctations: enhanced mRNA occurrence in high blood pressure induced intimal and medial thickening.
        J. Histochem. Cytochem. 1990; (in press)
        • Chu M.L.
        • Myers J.C.
        • Bernard M.P.
        • Ding J.-F.
        • Ramirez F.
        Cloning and characterization of five overlapping cDNAs specific for the human pro al(l) collagen chain.
        Nucleic Acids Res. 1982; 10: 5925
        • Bernard M.P.
        • Myers J.C.
        • Chu M.-L.
        • Ramirez F.
        • Eikenberry E.F.
        • Prockop D.J.
        Structure of a cDNA for the pro a2 chain of human type I procollagen. Comparison with chick cDNA for pro α2(I) identifies structurally conserved features of the protein and the gene.
        Biochemistry. 1983; 22: 1139
        • Myers J.C.
        • Chu M.-L.
        • Faro S.H.
        • Clark W.J.
        • Prockop D.J.
        • Ramirez F.
        Cloning a cDNA for the pro-α2 chain of human type I collagen.
        in: 5th Edition. Proc. Natl. Acad. Sci. USA. 78. 1981: 3516
        • Misculin M.
        • Dalgleish R.
        • Kluve-Beckermann B.
        • Rennard S.I.
        • Tolstoshev P.
        • Brantly M.
        • Crystal R.G.
        Human type III collagen gene expression is coordinately modulated with the type I collagen genes during fibroblast growth.
        Biochemistry. 1986; 25: 1408
        • Sternberger L.A.
        • Hardy P.H.
        • Cucullis J.J.
        • Meyer H.G.
        The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horse-radish peroxidase - anti-horse-radish peroxidase) and its use in the detection of spirochetes.
        J. Histochem. Cytochem. 1970; 18: 315
        • Zwadlo G.
        • Schlegel R.
        • Sorg C.
        A monoclonal antibody to a subset of human macrophages found only in the peripheral blood and inflammatory tissues.
        J. Immunol. 1986; 137: 512
        • Zwadlo G.
        • Bröcker E.-B.
        • von Bassewitz D.-B.
        • Feige U.
        • Sorg C.
        Monoclonal antibody to a differentiation antigen present on mature human macrophages and absent from monocytes.
        J. Immunol. 1985; 134: 1487
        • Tsukada T.
        • Tippens D.
        • Gordon D.
        • Ross R.
        • Gown A.M.
        HHF35, a muscle-actin-specific monoclonal antibody. 1. Immunocytochemical and biochemical characterization.
        Am. J. Pathol. 1987; 126: 51
        • Tsukada T.
        • Mc Nutt M.A.
        • Ross R.
        • Gown A.M.
        HHF35, a muscle-actin-specific monoclonal antibody. 2. Reactivity in normal, reactive, and neoplastic human tissues.
        Am. J. Pathol. 1987; 127: 389
        • Cordell J.L.
        • Falini B.
        • Erber W.N.
        • Ghosh A.K.
        • Abdulaziz Z.
        • Macdonald S.
        • Pulford K.A.F.
        • Stein H.
        • Mason D.Y.
        Immunoenzymatic labeling of monoclonal antibodies using immune complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP complexes).
        J. Histochem. Cytochem. 1984; 32: 219
        • Gerdes J.
        • Schwab U.
        • Lemke H.
        • Stein H.
        Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation.
        Int. J. Cancer. 1983; 31: 13
        • Barnes M.J.
        Collagens in atherosclerosis.
        Coll. Rel. Res. 1985; 5: 65
        • Opsahl W.P.
        • DeLuca D.J.
        • Ehrhard L.A.
        Accelerated rates of collagen synthesis in atherosclerotic arteries quantified in vivo.
        Arteriosclerosis. 1987; 7: 470
        • Ooshima A.
        • Midorikawa O.
        Increased lysyl oxidase activity in blood vessels of hypertensive rats and effect of β-aminopropionitrile on arteriosclerosis.
        Jap. Circ. J. 1977; 41: 1337
        • Crossley H.L.
        • Johnson A.R.
        • Mauger K.K.
        • Wood N.L.
        • Fuller G.C.
        Aortic proline hydroxylase in hypoxia induced arteriosclerosis in rabbits.
        Life Sci. 1972; 11: 869
        • Gerrity R.G.
        The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions.
        Am. J. Pathol. 1981; 103: 181
        • Gerrity R.G.
        The role of the monocyte in atherogenesis. II. Migration of foam cells from atherosclerotic lesions.
        Am. J. Pathol. 1981; 103: 191
        • Stary H.C.
        Macrophages, macrophage foam cells, and eccentric intimal thickening in the coronary arteries of young children.
        Atherosclerosis. 1987; 64: 91
        • Fowler S.
        • Shio H.
        • Haley N.J.
        Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations.
        Lab. Invest. 1979; 41: 372
        • Joris I.
        • Stetz E.
        • Majno G.
        Lymphocytes and monocytes in the aortic intima.
        Atherosclerosis. 1979; 34: 221
        • Schwartz C.J.
        • Sprague E.A.
        • Kelley J.L.
        • Valente A.J.
        • Suenram C.A.
        Aortic intimal monocyte recruitment in the normo and hypercholesterolemic baboon (Papio cynocephalus ).
        Virchows Arch. 1985; 405: 175
        • Gerrity R.G.
        • Goss J.A.
        • Soby L.
        Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta.
        Arteriosclerosis. 1985; 5: 55
        • Roessner A.
        • Herrera A.
        • Höing H.J.
        • Vollmer E.
        • Zwadlo G.
        • Schurmann R.
        • Sorg C.
        • Grundmann E.
        Identification of macrophages and smooth muscle cells with monoclonal antibodies in the human atherosclerotic plaque.
        Virchows Arch. 1987; 412: 169
        • Kreipe H.
        • Radzun H.-J.
        • Parwaresch M.R.
        Phenotypic differentiation patterns of the human monocyte/macrophage system.
        Histochem. J. 1986; 18: 441
        • Radzun H.-J.
        • Kreipe H.
        • Zavazava N.
        • Hansmann M.-L.
        • Parwaresch M.R.
        Diversity of the human monocyte/macrophage system as detected by monoclonal antibodies.
        J. Leucocyte Biol. 1988; 43: 41
        • Aqel N.M.
        • Ball R.Y.
        • Waldmann H.
        • Mitchinson M.J.
        Monocytic origin of foam cells in human atherosclerotic plaques.
        Atherosclerosis. 1984; 53: 265
        • Klurfeld D.M.
        Identification of foam cells in human atherosclerotic lesions as macrophages using monoclonal antibodies.
        Arch. Pathol. Lab. Med. 1985; 109: 445
        • Watanabe T.
        • Hirata M.
        • Yoshikawa Y.
        • Nagafuchi Y.
        • Toyoshima H.
        • Watanabe T.
        Role of macrophages in atherosclerosis.
        Lab. Invest. 1985; 53: 80
        • Gown A.M.
        • Tsukada T.
        • Ross R.
        Human atherosclerosis. 11. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions.
        Am. J. Pathol. 1986; 125: 191
        • Roberts A.B.
        • Flanders K.C.
        • Kondaiah P.
        • Thompson N.L.
        • van Obberghen-Schilling E.
        • Wakefield L.
        • Rossie P.
        • de Combrugghe B.
        • Heine U.
        • Sporn M.B.
        Transforming growth factor β: biochemistry and roles in embryogenesis, tissue repair and remodeling, and carcinogenesis.
        Rec. Progr. Horm. Res. 1988; 44: 157
        • Wahl S.M.
        The role of lymphokines and monokines in fibrosis.
        Ann. N.Y. Acad. Sci. 1986; 460: 224
        • Dayer J.M.
        • Damczuk S.
        Cytokines and other mediators in rheumatoid arthritis, Springer Semin.
        Immunopathol. 1984; 7: 387
        • Mizel S.B.
        • Dayer J.M.
        • Krane S.M.
        • Mergenhagen S.E.
        Stimulation of rheumatoid synovial cell collagenase and prostaglandin production by partially purified lymphocyte-activating factor (Interleukin-1).
        in: 5th Edition. Proc. Natl. Acad. Sci., US-Biol. Sci.78. 1981: 2474
        • Postlethwaite A.E.
        • Lachman L.B.
        • Mainardi C.L.
        • Kang A.H.
        Interleukin 1 stimulation of collagenase production by cultured fibroblasts.
        J. Exp. Med. 1983; 157: 801
        • Brenner D.A.
        • O'Hara M.
        • Angel P.
        • Chojkier M.
        • Karin M.
        Prolonged activation of jun and collagen genes by tumor necrosis factor-a.
        Nature. 1989; 337: 661
        • Kähäri V.-M.
        • Heino J.
        • Vuorio E:
        Interleukin-1 increases collagen production and mRNA levels in cultured skin fibroblasts.
        Biochim. Biophys. Acta. 1987; 929: 142
        • Postlethwaite A.E.
        • Raghow R.
        • Stricklin G.P.
        • Poppleton H.
        • Seyer J.M.
        • Kang A.H.
        Modulation of fibroblast functions by interleukin 1: increased steady-state accumulation of type I procollagen messenger RNAs and stimulation of other functions but not chemotaxis by human recombinant interleukin lα and β.
        J. Cell Biol. 1988; 106: 311
        • Bhatnagar R.
        • Penfornis H.
        • Mauviel A.
        • Loyau G.
        • Saklatvala J.
        • Pujol J.-P.
        Interleukin-1 inhibits the synthesis of collagen in fibroblasts.
        Biochem. Int. 1986; 13: 709
        • Mauviel A.
        • Teyton L.
        • Bhatnagar R.
        • Penfornis H.
        • Laurent M.
        • Hartmann D.
        • Bonaventure J.
        • Loyau C.
        • Saklatvala J.
        • Pujol J.-P.
        Interleukin-la modulates collagen gene expression in cultured synovial cells.
        Biochem. J. 1988; 252: 247
        • Goldring M.B.
        • Krane S.M.
        Modulation by recombinant interleukin 1 of synthesis of types I and III collagens and associated procollagen mRNA levels in cultured human cells.
        J. Biol. Chem. 1987; 262: 16724
        • Wilcox J.N.
        • Smith K.M.
        • Williams L.T.
        • Schwartz S.M.
        • Gordon D.
        Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization.
        J. Clin. Invest. 1988; 82: 1134
        • Kourembanas S.
        • Faller D.V.
        Platelet-derived growth factor production by human umbilicial vein endothelial cells is regulated by basic fibroblast growth factor.
        J. Biol. Chem. 1989; 264: 4456
        • Akahoshi T.
        • Oppenheim J.J.
        • Matsushima K.
        Interleukin 1 stimulates its own receptor expression on human fibroblasts through the endogenous production of prostaglandin(s).
        J. Clin. Invest. 1988; 82: 1219
        • Palombella V.J.
        • Yamashiro D.J.
        • Maxfield F.R.
        • Decker S.J.
        • Vilcek J.
        Tumor necrosis factor increases the number of epidermal growth factor receptors on human fibroblasts.
        J. Biol. Chem. 1987; 262: 1950
        • Raines E.W.
        • Dower S.K.
        • Ross R.
        Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA.
        Science. 1989; 243: 393
        • Paulsson Y.
        • Austgulen R.
        • Hofsli E.
        • Heldin C.-H.
        • Westermark B.
        • Nissen-Meyer J.
        Tumor necrosis factor-induced expression of platelet-derived growth factor A-chain messenger RNA in fibroblasts.
        Exp. Cell Res. 1989; 180: 490
        • Nusgens B.
        • Mevill C.
        • Lapiére C.
        • Bell E.
        Collagen biosynthesis by cells in a tissue equivalent matrix in vitro.
        Coll. Rel. Res. 1984; 4: 351