Advertisement

Cytokine regulation of granulocyte-macrophage colony stimulating factor and macrophage colony-stimulating factor production in human arterial smooth muscle cells

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Smooth muscle cells (SMC) are the major cell type found in the walls of large blood vessels and appear to participate in local immune and inflammatory reactions, as well as in certain vascular diseases. We tested whether human arterial SMC can produce in vitro the colony stimulating factors (CSFs), granulocyte macrophage-CSF (GM-CSF) and macrophage CSF (M-CSF). Untreated internal mammary artery and aortic SMC produced no detectable GM-CSF but constitutively made M-CSF, measured by ELISA and radioimmunoassay, respectively. Interleukin-1 (IL-1) and, to a lesser extent, tumor necrosis factor α (TNFα) stimulated GM-CSF formation within 3 h; mRNA levels also increased particularly in the presence of the protein synthesis inhibitor, cycloheximide. IL-1, TNFa and, in addition, interferon-γ (IFN-γ) raised the M-CSF levels within 6 h; cycloheximide potentiated the effects of IL-1 and TNFa on mRNA levels. These results suggest that cytokine-stimulated human arterial SMC may be a source of the M-CSF found in atherosclerotic lesions. Since monocytes/macrophages can be activated by GM-CSF and M-CSF, while GM-CSF can also affect granulocyte function, SMC may participate in inflammatory reactions and vascular diseases by releasing these cytokines.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cliff W.
        The extra-endothelial cells of blood vessels.
        in: Harrison J.R. McMinn R.M.H. Treherne J.L. Blood Vessels. Cambridge Press, Cambridge1976: 68
        • Ross R.
        • Glomset J.A.
        Atherosclerosis and the arterial smooth muscle cell.
        Science. 1973; 180: 1332
        • Munro J.M.
        • Cotran R.S.
        Biology of disease. The pathogenesis of atherosclerosis: atherogenesis and inflammation.
        Lab. Invest. 1988; 58: 249
        • Libby P.
        • Ordovas J.M.
        • Birinyi L.K.
        • Auger K.R.
        • Dinarello C.A.
        Inducible interleukin-1 gene expression in human vascular smooth muscle cells.
        J. Clin. Invest. 1986; 78: 1432
        • Warner S.J.C.
        • Libby P.
        Human vascular smooth muscle cells: target for and source of tumor necrosis factor.
        J. Immunol. 1989; 142: 100
        • Loppnow H.
        • Libby P.
        Proliferating or interleukin-1 activated human vascular smooth muscle cells secrete copious interleukin-6.
        J. Clin. Invest. 1990; 85: 731
        • Aqel N.M.
        • Ball R.Y.
        • Waldmann H.
        • Mitchinson M.J.
        Identification of macrophages and smooth muscle cells in human atherosclerosis using monoclonal antibodies.
        J. Pathol. 1985; 41: 372
        • Jonasson L.
        • Holm J.
        • Sckalli O.
        • Bonders G.
        • Hansson G.K.
        Regional accumulations of T cells, macrophages and smooth muscle cells in the human atherosclerotic plaque.
        Arteriosclerosis. 1985; 6: 131
        • Clinton S.K.
        • Fleet J.C.
        • Loppnow H.
        • Salomon R.N.
        • Clark B.D.
        • Cannon J.G.
        • Shaw A.R.
        • Dinarello C.A.
        • Libby P.
        Interleukin-1 gene expression in rabbit vascular tissue in vivo.
        Am. J. Pathol. 1991; 138: 1005
        • Ross R.
        • Masuda J.
        • Raines E.W.
        • Gown A.M.
        • Katsuda S.
        • Sasahara M.
        • Malden L.T.
        • Masuko H.
        • Stao H.
        Localization of PDGF-B protein in macrophages in all phases of atherogenesis.
        Science. 1990; 248: 1009
      1. Robbins. S.L., Angel, M. and Kumar, V., The vascular system. In: Basic Pathology, W.B. Saunders Co., Philadelphia, p. 259.

        • Moore P.
        Immune mechanisms in the primary and secondary vasculitides.
        J. Neurol. Sciences. 1989; 93: 129
        • Metcalf D.
        The molecular control of cell division, diffentiation commitment and maturation into haemopoietic cells.
        Nature. 1989; 329: 27
        • Hamilton J.A.
        • Stanley E.R.
        • Burgess A.W.
        • Shadduck R.K.
        Stimulation of macrophage plasminogen activator by colony stimulating factors.
        J. Cell. Physiol. 1980; 103: 435
        • Rosenfeld M.E.
        • Yla-Herttuala S.
        • Lipton B.A.
        • Ord V.A.
        • Witztum J.L.
        • Steinberg D.
        Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans.
        Am. J. Pathol. 1992; 140: 291
        • Clinton S.K.
        • Underwood R.
        • Hayes L.
        • Sherman M.L.
        • Kufe D.W.
        • Libby P.
        Macrophage colonystimulating factor gene expression in vascular cells and in experimental and human atherosclerosis.
        Am. J. Pathol. 1992; 140: 301
        • Inaba T.
        • Yamada N.
        • Gotoda T.
        • et al.
        Expression of M-CSF receptor encoded by c-fins on smooth muscle cells derived from arteriosclerotic lesion.
        J. Biol. Chem. 1992; 267: 5693
        • Nimer S.D.
        • Champlin R.E.
        • Golde D.W.
        Serum lowering cholesterol activity of granulocyte macrophage colony stimulating factor.
        J. Am. Med. Assoc. 1988; 260: 3297
        • Motoyoshi K.
        • Yoshida K.
        • Hatake K.
        • et al.
        Recombinant and native urinary colony-stimulating factor production of human peripheral blood monocytes.
        Exp. Hematol. 1989; 17: 68
        • Ishibashi S.
        • Inaba T.
        • Shimano H.
        • et al.
        Monocyte colony-stimulating factor enhances uptake and degradation of acetylated low density lipoproteins and cholesterol esterification in human moncyte-derived macrophages.
        J. Biol. Chem. 1990; 265: 14109
        • Chamley-Campbell J.H.
        • Campbell G.R.
        • Ross R.
        The smooth muscle cell in culture.
        Physiol. Rev. 1979; 59: 1
      2. Zoellner, H., Filonzi, EL., Stanton, H.R., Layton, J.E. and Hamilton, J.A., Human arterial smooth muscle cells synthesise granulocyte-CSF in response to IL-α and TNFα, Blood (in press).

        • Gabbiani G.
        • Kocher D.
        • Winter S.
        • et al.
        Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alphatype actin.
        in: Proc. Natl. Acad. Sci. USA. 78. 1981: 298
        • Gabbiani G.
        • Kocher D.
        • Bloom W.S.
        • Ban Deklerckhove J.
        • Weber K.
        Actin expression in smooth muscle cells of rat aortic media.
        J. Clin. Invest. 1984; 73: 148
        • Kocher O.
        • Skalli O.
        • Bloom W.S.
        • Gabbiani G.
        Cytoskeleton of rat aortic smooth muscle cell. Normal conditions and experimental intimal thickening.
        Lab. Invest. 1984; 50: 645
        • Cebon J.
        • Dempsey P.
        • Fox R.
        • Kannourakis G.
        • Bonnem E.
        • Burgess A.W.
        • Morstyn G.
        Pharmacokinetics of human granulocyte-macrophage colony-stimulating factor using a sensitive immunoassay.
        Blood. 1988; 72: 1340
        • Leizer T.
        • Cebon J.
        • Layton J.E.
        • Hamilton J.A.
        Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts. I. Induction of GM-CSF and G-CSF production by interleukin-1 and tumor necrosis factor.
        Blood. 1990; 76: 1989
        • Shadle P.J.
        • Allen J.I.
        • Geier M.D.
        • Kotho K.
        Detection of endogenous macrophage colony stimulating factor (M-CSF) in human blood.
        Exp. Hematol. 1989; 17: 154
        • Chirgwin J.M.
        • Przybyla A.E.
        • Macdonald R.J.
        • Rutter W.J.
        Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.
        Biochemistry. 1979; 18: 5294
        • Lowry O.H.
        • Rosenbrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with folin reagent.
        J. Biol. Chem. 1951; 193: 265
        • Schrader J.W.
        • Moyer C.
        • Ziltener H.J.
        • Reinisch C.L.
        Release of the cytokines colony-stimulating factor-1, granulocyte-macrophage colony-stimulating factor, and IL-6 by cloned murine vascular smooth muscle cells.
        J. Immunol. 1991; 146: 3799
        • Sieff C.A.
        • Niemeyer C.M.
        • Mentzer S.J.
        • Faller D.V.
        Interleukin-1, tumor necrosis factor and production of colony-stimulating factors by cultured mesenchymal cells.
        Blood. 1988; 72: 1316
        • Seelentag W.
        • Mermod J.J.
        • Vassalli P.
        Interleukin1 and tumor necrosis factor-a additively increase the levels of granulocyte-macrophage and granulocyte colony stimulating factor (CSF) mRNA in human fibroblasts.
        Eur. J. Immunol. 1989; 19: 209
        • Yang Y.C.
        • Tsai S.
        • Wong G.G.
        • Clark S.C.
        Interleukin-1 regulation of hemopoietic growth factor production by human stromal fibroblasts.
        J. Cell. Physiol. 1988; 134: 292
        • Yamato K.
        • El-Hajjaoui Z.
        • Kuo J.K.
        • Koeffler H.P.
        Granulocyte-macrophage colony stimulating factor: Signals for its mRNA accumulation.
        Blood. 1989; 74: 1314
        • Akashi M.
        • Shaw G.
        • Gross M.
        • Saito M.
        • Koeffler H.P.
        Role of AUUU sequences in stabilization of granulocyte-macrophage colony-stimulating factor RNA in stimulated cells.
        Blood. 1991; 78: 2005
        • Sherman M.L.
        • Weber B.L.
        • Datta R.
        • Kufe D.W.
        Transcriptional and posttranscriptional regulation of macrophage-specific colony-stimulating factor gene ex pression by tumor necrosis factor-α.
        J. Clin. Invest. 1990; 85: 442
        • Falkenburg J.H.F.
        • Harrington M.A.
        • de Paus R.A.
        • Walsh W.K.
        • Daub R.
        • Landegent J.E.
        • Broxmeyer H.E.
        Differential transcription and posttranscriptional regulation of gene expression of the colony-stimulating factors by interleukin-I and fetal bovine serum in murine fibroblasts.
        Blood. 1991; 78: 658
        • Salomon R.N.
        • Underwood R.
        • Doyle M.V.
        • Wang A.
        • Libby P.
        Increased apolipoprotein E and c-fins gene expression without elevated interleukin-1 or -6 mRNA levels indicates selective activation of macrophage functions in advanced human atheroma.
        in: Proc. Nad. Acad. Sci. USA. 89. 1992: 2814
        • Fleet J.C.
        • Clinton S.K.
        • Salomon R.N.
        • Loppnow H.
        • Libby P.
        Atherogenic diets enhance endotoxinstimulated interleukin-I and tumor necrosis factor gene expression in rabbit aortae.
        J. Nutr. 1992; 122: 294
        • Barath P.
        • Fishbein M.C.
        • Cao J.
        • Berenson J.
        • Helfant R.H.
        • Forrester J.S.
        Detection and localization of tumor necrosis factors in human atheroma.
        Am. J. Cardiol. 1990; 65: 297
        • Hansson G.K.
        • Holm J.
        • Jonasson L.
        Detection of activated T lymphocytes in the human atherosclestic plaque.
        Am. J. Pathol. 1989; 135: 169
        • Cheung D.L.
        • Hamilton J.A.
        The regulation of human monocyte DNA synthesis by colony stimulating factors, cytokines and cAMP.
        Blood. 1992; 79: 1972
        • Alvaro-Gracia J.M.
        • Zvaifler N.J.
        • Firestein G.S.
        Cytokines in chronic inflammatory arthritis. IV Granulocyte/macrophage colony-stimulating factor-mediated in duction of class II MHC antigen on human monocytes: A possible role in rheumatoid arthritis.
        J. Exp. Med. 1989; 170: 865
        • Gamble J.R.
        • Elliott M.J.
        • Jaipargas E.
        • Lopez A.F.
        • Vadas M.A.
        Regulation of human monocyte adherence by granulocyte-macrophage colony-stimulating factor.
        in: Proc. Natl. Acad. Sci. USA. 86. 1989: 7169
        • Hart P.H.
        • Vitti G.F.
        • Burgess D.R.
        • Whitty G.A.
        • Royston K.
        • Hamilton J.A.
        Activation of human monocytcs by granulocye-macrophage colony-stimulating factor: Increased urokinase type plasminogen activator activity.
        Blood. 1991; 77: 841
        • Wang J.M.
        • Griffin J.D.
        • Rambaldi A.
        • Chen Z.G.
        • Mantovani A.
        Induction of monocyte migration by recombinment macrophage colony stimulating factor.
        J. Immonol. 1988; 141: 575
      3. Hamilton, J.A., Whitty, G.A., Stanton, H. and Meager, A., Effects of macrophage-colony stimulating factor (MCSF or CSF-1) on human monocytes. Induction of expression of urokinase-type plasminogen activator, but not of secreted prostaglandin E2 interleukin-6, interleukin-1 or tumor necrosis factor-α. J. Leukocyte Biol., in press.

        • Gordon D.
        • Reidy M.A.
        • Benditt E.P.
        • Schwartz S.M.
        Cell proliferation in human coronary arteries.
        in: Proc. Natl. Acad. Sci. USA. 87. 1990: 4600
        • Libby P.
        • Hansson G.K.
        Biology of disease. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions.
        Lab. Invest. 1991; 64: 5
        • Gerrity R.G.
        • Naito H.K.
        • Richardson M.
        • Schwartz C.J.
        Dietary induced atherogenesis in swine: morphology of the intima in prelesion stages.
        Am. J. Pathol. 1979; 95: 775
        • Inaba T.
        • Gotoda T.
        • Shimano H.
        • et al.
        Platelet-derived growth factor induces c-furs and scavenger receptor genes in vascular smooth muscle cells.
        J. Biol. Chem. 1992; 267: 13107
        • Weisbart R.H.
        • Golde D.W.
        • Clark S.C.
        • Wong G.G.
        • Gassib J.C.
        Human granulocyte macrophage colony-stimulating factor is a neutrophil activator.
        Nature. 1985; 314: 361
        • Bussolino F.
        • Wang J.M.
        • Defilippi P.
        • et al.
        Granulocyte and granulocyte-macrophage colony-stimulating factors induce human endothelial cells to migrate and proliferate.
        Nature. 1989; 337: 471
        • Yong K.
        • Cohen H.
        • Khwaja A.
        • Jones H.M.
        • Linch D.C.
        Lack of effect of granulocyte-macrophage and granulocyte colony-stimulating factor on cultured human endothelial cells.
        Blood. 1991; 77: 1675
      4. Hamilton, J.A., Campbell, I.K., Wojta, J. and Cheung, D., Plasminogen activators and their inhibitors in arthritic disease, Ann. N.Y. Acad. Sci., in press.