Advertisement

Effect of low density lipoprotein on monocyte adhesiveness to endothelial cells in vitro

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Adhesion of monocytes to the endothelium is an early event in the development of atherosclerosis. The possibility that low density lipoproteins enhance this process by activating monocytes was investigated using an in vitro adhesion test on endothelial cell monolayer cultures. Preincubation of monocytes with low density lipoprotein (LDL) (100 μg LDL protein/ 1 × 106 cells/ml) for 15 min induced a 70% increase in adhesion to endothelial cells with a maximal effect at 100 μg LDL protein/ml and a short latency of effect (2 min). Anti-LDL receptor antibody, which inhibited LDL binding, blocked this activation. The LDL effect appeared to depend on receptor binding of LDL rather than on receptor-mediated endocytosis, since preincubation of monocytes with LDL at either 4°C or 37°C resulted in the same stimulation of adhesion. A cytofluorimetric study using integrin monoclonal antibodies (MAbs) against CD 18 and CD 11b did not reveal any increase in expression of the integrins on the surface of LDL-activated monocytes. However, a 30-min preincubation of monocytes with anti-CD 18 abolished the LDL-activated adhesion. These results indicate that LDL induces a rapid activation of monocyte adhesiveness to endothelial cells. This effect appears to be mediated by interaction of LDL with its receptor rather than LDL-receptor complex internalization or integrin membrane mobilization from intracellular pools. The integrin system nevertheless appears to be involved.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gordon T.
        • Kannel W.B.
        • Castelli W.P.
        • Dawber T.R.
        Lipoproteins, cardiovascular disease and death. The Framingham Study.
        Arch. Intern. Med. 1981; 141: 1128
        • Lipid Research Clinics Program
        The Lipid Research Clinics Coronary Primary Prevention Trial results: reduction in incidence of coronary heart disease.
        J. Am. Med. Assoc. 1984; 251: 351
        • Tyroler H.A.
        Lowering plasma cholesterol levels decreases risk of coronary heart disease: an overview of clinical trials.
        in: Steinberg D. Olefsky J.M. Hypercholesterolemia and Atherosclerosis. Churchill Livingstone, New York1987: 99-116
        • Gerrity R.G.
        • Naito H.K.
        • Richardson M.
        • Schwartz C.J.
        Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages.
        Am. J. Pathol. 1979; 95: 775
        • Faggiotto A.
        • Ross R.
        • Harker L.
        Studies of hypercholesterolemia in the non-human primate: I — changes that lead to fatty streak formation.
        Arteriosclerosis. 1984; 4: 323
        • Gerrity R.G.
        The role of the monocyte in atherogenesis: I — Transition of blood-borne monocytes into foam cells in fatty lesions.
        Am. J. Pathol. 1981; 103: 181
        • Joris I.
        • Zand T.
        • Nannari J.J.
        • Krokikowsko F.J.
        • Majno G.
        Studies on the pathogenesis of atherosclerosis: I — Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats.
        Am. J. Pathol. 1983; 113: 341
        • Jonasson L.
        • Holm J.
        • Skalli O.
        • Bondjers G.
        • Hansson G.K.
        Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque.
        Arteriosclerosis. 1986; 6: 131
        • Hansson G.K.
        • Jonasson L.
        • Lojsthed B.
        • Stemme S.
        • Kocher O.
        • Gabbiani G.
        Localization of T lymphocytes and macrophages in fibrous and complicated human atherosclerotic plaques.
        Atherosclerosis. 1988; 72: 135
        • Gown A.M.
        • Tsukada T.
        • Ross R.
        Human atherosclerosis: Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions.
        Am. J. Pathol. 1986; 125: 191
        • Steinberg D.
        • Parthasarathy S.
        • Carew T.E.
        • Khoo J.C.
        • Witztum J.L.
        Modifications of low-density lipoprotein that increase its atherogenicity.
        N. Engl. J. Med. 1989; 320: 915
        • Pomerantz K.B.
        • Hajjar D.P.
        Eicosanoid metabolism in cholesterol-enriched arterial smooth muscle cells: reduced arachidonate release with concomitant decrease in cyclooxygenase products.
        J. Lipid. Res. 1989; 30: 1219
        • Pritchard K.A.
        • Wong P.Y.K.
        • Stemerman M.B.
        Atherogenic concentrations of low density lipoprotein enhance endothelial cell generation of epoxyeicosatrienoic acid products.
        Am. J. Pathol. 1990; 36: 1381
        • Oikawa S.I.
        • Hori S.
        • Sano R.
        • Suzuki N.
        • Fujii Y.
        • Abe R.
        • Goto Y.
        Effect of low density lipoprotein on DNA synthesis of cultured human arterial smooth muscle cells.
        Atherosclerosis. 1987; 64: 7
        • Scott-Burden T.
        • Resink T.J.
        • Hahn A.W.A.
        • Baur U.
        • Box R.J.
        • Bühler F.R.
        Induction of growth-related metabolism in human vascular smooth muscle cells by low density lipoprotein.
        J. Biol. Chem. 1989; 264: 12582
        • Sachinidis A.
        • Mengden T.
        • Locher R.
        • Brunner C.
        • Vetter W.
        Novel cellular activities for low density lipoprotein in vascular smooth muscle cells.
        Hypertension. 1990; 15: 704
        • Paragh G.
        • Nagy J.T.
        • Szondy E.
        • Föris G.
        • Leövey A.
        Immunomodulating effect of low density lipoprotein on human monocytes.
        Clin. Exp. Immunol. 1986; 64: 665
        • Falcone D.
        • Ferenc M.J.
        Acetyl-LDL stimulates macrophage-dependent plasminogen activation and degradation of extracellular matrix.
        J. Cell. Physiol. 1988; 135: 387
        • Osborn L.
        Leukocyte adhesion to endothelium in inflammation.
        Cell. 1990; 62: 3
        • Havel R.J.
        • Eder H.A.
        • Bragdon J.H.
        The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum.
        J. Clin. Invest. 1955; 34: 1345
        • Lee D.M.
        Malondialdehyde formation in stored plasma.
        Biochem. Biophys. Res. Commun. 1980; 95: 1663
        • Haberland M.E.
        • Fogelman A.M.
        • Edwards P.A.
        Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoproteins.
        in: Proc. Natl. Acad. Sci. USA. 79. 1982: 1712
        • Moulin S.
        • Fruchart J.C.
        • Dewailly P.
        • Sezille G.
        Lipoprotein electrophoresis on acrylamide-agarose plates, with discontinuous acrylamide gradient.
        Clin. Chim. Acta. 1979; 91: 159
        • Steinbrecher U.P.
        • Parthasarathy S.
        • Leake D.S.
        • Witztum J.L.
        • Steinberg D.
        Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.
        in: Proc. Nat. Acad. Sci. USA. 81. 1984: 3883
        • Steinbrecher U.P.
        Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products.
        J. Biol. Chem. 1987; 262: 3603
        • Young N.S.
        • Levin J.
        • Prendergast R.A.
        An invertebrate coagulation system activated by endotoxin: evidence for enzymatic mediation.
        J. Clin. Invest. 1972; 51: 1790
        • Lowry O.H.
        • Rosenbrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265
        • Wahl L.M.
        • Katena I.
        • Wilder R.L.
        • Winter C.C.
        • Haraoui H.
        • Scher I.
        • Wahl S.M.
        Isolation of human mononuclear cell subsets by counterflow centrifugal elutriation.
        Cell. Immunol. 1984; 85: 373
        • Turpin J.
        • Hester J.P.
        • Hersh E.M.
        • Lopez-Berestein G.
        Centrifugal elutriation as a method for isolation of large numbers of functionally intact human peripheral blood monocytes.
        J. Clin. Apheris. 1986; 3: 11
        • Yam L.T.
        • Li C.Y.
        • Crosby W.H.
        Cytochemical identification of monocytes and granulocytes.
        Am. J. Clin. Pathol. 1971; 55: 283
      1. Jaffe, E.A., Culture and identification of large vessel endothelial cells. In Jaffe E.A. (Ed.), Biology of Endothelial Cells, Martinus Niijhoff Publishers, Boston, pp. 1–13.

        • Weinberg J.
        • Blinder R.
        In vitro function of Indium 111 oxine labelled human monocytes.
        J. Immuol. Methods. 1986; 95: 9
        • Doherty D.E.
        • Haslett C.
        • Tonnesen M.G.
        • Henson P.M.
        Human monocyte adherence: a primary effect of chemotactic factors on the monocyte to stimulate adherence to human endothelium.
        J. Immunol. 1987; 138: 1762
        • Daniel Lamaziere J.M.
        • Desmouliere A.
        • Pascal M.
        • Larrue J.
        Detection of atherosclerotic plaque with two monoclonal antibodies. 2PIA2 monoclonal antibody is specific for smooth muscle cells in atherosclerotic plaques.
        Atherosclerosis. 1988; 74: 115
        • Duff D.W.
        • Atkins E.
        The inhibitory effect of polymyxin B on endotoxin-induced endogenous pyrogen in vitro.
        J. Immunol. Methods. 1982; 52: 333
        • Beisiegel V.
        • Schneider W.J.
        • Goldstein J.L.
        • Anderson R.G.W.
        • Brown M.S.
        Monoclonal antibodies to the low density lipoprotein receptor as probes for study of receptor-mediated endocytosis and the genetics of familial hypercholesterolemia.
        J. Biol. Chem. 1981; 256: 11923
        • Davis C.G.
        • Lehrman M.A.
        • Russel D.W.
        • Anderson R.G.W.
        • Brown M.S.
        • Goldstein J.L.
        The J.D. mutation in familial hypercholesterolemia amino-acid substitution in cytoplasmic domain impedes internalization of LDL receptors.
        Cell. 1986; 45: 15
        • Carlos T.M.
        • Harlan J.M.
        Membrane proteins involved in phagocyte adherence to endothelium.
        Immunol. Rev. 1990; 114: 5
        • Alderson L.M.
        • Endermann G.
        • Lindsey S.
        • Pronzcuk A.
        • Hoover R.
        • Hayes K.C.
        LDL enhances monocytes adhesion to endothelial cells in vitro.
        Am. J. Pathol. 1986; 123: 334
        • Endermann G.
        • Pronzcuk A.
        • Friedman G.
        • Sindsey S.
        • Alderson L.
        • Hayes K.C.
        Monocyte adherence to endothelial cells in vitro is increased by βVLDL.
        Am. J. Pathol. 1987; 126: 1
        • Territo M.C.
        • Berliner J.A.
        • Almada L.
        • Ramirez R.
        • Fogelman A.
        Beta very low density lipoprotein pretreatment of endothelial monolayers increase monocyte adhesion.
        Arteriosclerosis. 1989; 9: 824
        • Berliner J.A.
        • Territo M.C.
        • Sevanian A.
        • Ramin S.
        • Kim J.A.
        • Bamshad B.
        • Esterson M.
        • Fogelman A.M.
        Minimally modified low density lipoprotein stimulates monocyte endothelial interactions.
        J. Clin. Invest. 1990; 85: 1260
        • Frostgar J.
        • Nilsson J.
        • Haegerstrand A.
        • Hamsten A.
        • Wigzell H.
        • Gidlund M.
        Oxidized low density lipoprotein induces differentiation and adhesion of human monocytes and the monocytic cell line U937.
        in: Proc. Natl. Acad. Sci. USA. 87. 1990: 904
        • Arnaout M.A.
        • Lanier L.L.
        • Faller D.V.
        Relative contribution of the leukocyte molecules MO I, LFA-1 and p150.95 (LeuM5) in adhesion of granulocytes and monocytes to vascular endothelium is tissue- and stimulus-specific.
        J. Cell. Physiol. 1988; 137: 305
        • Zimmerman G.A.
        • McIntyre T.M.
        Neutrophil adherence to human endothelium in vitro occurs by CDw18 (Mol, MAC- 1/LFA-1/GPI50,95) glycoprotein dependent and -independent mechanisms.
        J. Clin. Invest. 1988; 81: 531
        • Geng J.G.
        • Bevilacqua M.P.
        • Moore K.L.
        • McIntyre T.M.
        • Prescott S.M.
        • Kim J.M.
        • Bliss G.A.
        • Zimmerman G.A.
        • McEver R.P.
        Rapid neutrophil adhesion to activated endothelium mediated by GMP-140.
        Nature. 1990; 343: 757
        • Springer T.A.
        Adhesion receptors of the immune system.
        Nature. 1990; 346: 425
        • Pritchard K.A.
        • Schwarz S.M.
        • Medow M.S.
        • Stemerman M.B.
        Effect of low-density lipoprotein on endothelial cell membrane fluidity and mononuclear cell attachment.
        Am. J. Physiol. (Cell. Physiol.). 1991; 29: 643
        • Kelley J.L.
        • Rosek M.M.
        • Suenram C.A.
        • Schwartz C.J.
        Activation of human peripheral blood monocytes by lipoproteins.
        Am. J. Pathol. 1988; 130: 223
        • Fogelman A.M.
        • Haberland M.E.
        • Seager J.
        • Hokom M.
        • Edwards P.A.
        Factors regulating the activities of the low density lipoprotein receptor and the scavenger receptor on human monocyte macrophages.
        Lip. Res. 1981; 22: 1131
        • Brown M.S.
        • Golstein J.L.
        A receptor-mediated pathway for cholesterol homeostasis.
        Science. 1986; 232: 34
        • Block L.H.
        • Knorr M.
        • Vogt E.
        • Locher R.
        • Vetter W.
        • Groscurth P.
        • Qiao B.Y.
        • Pometta D.
        • James R.
        • Regenass M.
        • Pletscher A.
        Low density lipoprotein causes general cellular activation with increased phosphatidyl inositol turnover and lipoprotein metabolism.
        in: Proc. Nat. Acad. Sci. USA. 85. 1988: 885
        • Morita R.
        • Morimoto S.
        • Koch E.
        • Fukuo K.
        • Kim S.
        • Itoh K.
        • Taniguchi K.
        • Onishi T.
        • Ogihara T.
        Low density lipoprotein and apoprotein B induce increases in inositol Triphosphate and cytosolic free Ca++ via pertussis toxin-sensitive GTP binding protein in vascular smooth muscle cells.
        Biochem. Int. 1989; 18: 647
        • Ishikawa Y.
        • Asaoka Y.
        • Taniguchi T.
        • Tsunemitsu M.
        • Fukuzaki H.
        Phosphatidylinositol turnover in human monocyte-derived macrophages by native and acetyl LDL.
        FEBS Lett. 1989; 246: 35
        • Miller L.J.
        • Bainton D.F.
        • Borregaard N.
        • Springer T.A.
        Stimulated mobilization of monocyte Mac-I and p 150.95 adhesion proteins from a intracellular vesicular compartment to the cell surface.
        J. Clin. Invest. 1987; 80: 535
        • Vedder N.B.
        • Harlan J.M.
        Increased surface expression of CDllb/CDl8 (Mac-1) is not required for stimulated neutrophil adherence to cultures endothelium.
        J. Clin. Invest. 1988; 81: 676
        • Hara T.
        • Fu S.M.
        Phosphorylation of alpha 1 beta subunits of 180/100 Kd polypeptides (LFA-1) and related antigens.
        in: Reinherz E.L. Haynes B.F. Nadler L.M. Bernstein I.D. Leukocyte Typing II. Human Myeloid and Hematopoietic Cells. 3. Springer Verlag, 1986: 77-84
        • Buyon J.P.
        • Spade S.G.
        • Reibman J.
        • Abramson S.B.
        • Philips M.R.
        • Weissman G.
        • Winchester R.
        Constitutive and induced phosphorylation of the alpha and beta chains of the CD I I/CD18 leukocyte integrin family.
        J. Immunol. 1990; 144: 191
        • Dustin M.L.
        • Springer T.A.
        T cell receptor cross linking transiently stimulates adhesiveness through LFA1.
        Nature. 1989; 341: 619
        • Hynes R.O.
        Integrins: Versatility, modulation and signaling in cell adhesion.
        Cell. 1992; 69: 11