Advertisement

Predisposition to LDL oxidation in patients with and without angiographically established coronary artery disease

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Oxidative modification of low density lipoprotein (LDL) may play an important role in the mechanism of atherosclerotic damage to blood vessels. In the present study the LDL isolated from the plasmas of 73 coronary artery disease (CAD) patients, 28 valvular heart disease (VHD) patients, 59 subjects affected by type IIa hyperlipoproteinemia and 71 controls was oxidatively modified by incubation with copper ions. In 15 CAD and 15 Type IIa patients and 15 controls the LDL chemical composition and polyunsaturated fatty acid (PUFA) content were also measured. Differences in the LDL susceptibilities to lipid peroxidation were studied by measuring the changes of fluorescence intensity. The lag phase in the CAD patients was found to be significantly lower than in the VHD and controls (P < 0.001). The lag phase in the type IIa patients was significantly higher than in the CAD patients (P < 0.01), and significantly lower than the VHD and controls (P < 0.01). The LDL isolated from the type Ila patients had an increase in the relative content of free and esterified cholesterol (P < 0.05), while the CAD patients had a decrease in the relative content of free cholesterol (P < 0.05), and an increase in the relative content of protein (P < 0.05). The lowest value of the LDL cholesterol to protein ratio and LDL size, was found in the CAD patients (P < 0.05). When expressed in μg/mg LDL cholesterol, the concentration of the LDL PUFAs was significantly higher in the CAD group than in the others (P < 0.05). The LDL α-tocopherol concentration was quite similar in the different groups. In conclusion the results show that the patients with established CAD and type IIa hyperlipoproteinemia have a greater predisposition to LDL oxidation in vitro than the subjects without CAD. The enhanced in vitro susceptibility for oxidation is probably the result of both a variation of LDL chemical composition and increase of PUFAs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Steinberg D.
        • Parthasarathy S.
        • Carew T.E.
        • Khoo J.C.
        • Witztum J.L.
        Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenecity.
        N. Engl. J. Med. 1989; 320: 915
        • Palinsky W.
        • Yla-Herttuala S.
        • Rosenfeld M.E.
        • Butler S.W.
        • Socher S.A.
        • Parthasarathy S.
        Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoproteins.
        Arteriosclerosis. 1990; 10: 325
        • Steinbrecher U.P.
        • Parthasarathy S.
        • Leake D.S.
        • Witztum J.L.
        • Steinberg D.
        Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.
        in: Proc. Natl. Acad. Sci. USA. 78. 1984: 6499
        • Sparrow C.P.
        • Parthasarathy S.
        • Steinberg D.
        Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cellmediated oxidative modification.
        J. Lipid Res. 1988; 29: 745
        • Steinbrecher U.P.
        • Witztum J.L.
        • Parthasarathy S.
        • Steinberg D.
        Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism.
        Arteriosclerosis. 1987; 7: 135
        • Esterbauer H.
        • Rotheneder M.
        • Striegl G.
        • Waeg G.
        • Ashy A.
        • Sattler W.
        • Jurgens G.
        Vitamin E and other lipophilic antioxidants protect LDL against oxidation.
        Fat Sci. Technol. 1989; 8: 316
        • Esterbauer H.
        • Jurgens G.
        • Quehenberger O.
        • Koller E.
        Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes.
        J. Lipid Res. 1987; 28: 295
        • Lenz M.L.
        • Hughes H.
        • Mitchell J.R.
        Lipid hydroperoxy and hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein.
        J. Lipid Res. 1990; 31: 1043
        • Babiy A.V.
        • Gebiccki J.M.
        • Sullivan D.R.
        Vitamin E content and low density lipoprotein oxidazibility induced by free radicals.
        Atherosclerosis. 1990; 81: 175
        • Rotheneder M.D.
        • Puhl H.
        • Waeg G.
        • Striegl G.
        • Esterbauer H.
        Effect of oral supplementation with oalpha-tocopherol on the vitamin E content of human low density lipoproteins and resistance to oxidation.
        J. Lipid Res. 1991; 32: 1325
        • Cominacini L.
        • Garbin U.
        • Cenci B.
        • Davoli A.
        • Pasini C.
        • Ratti E.
        • Gaviraghi G.
        • Lo Cascio V.
        • Pastorino A.M.
        Predisposition to LDL oxidation during copper catalyzed oxidative modification and its relation to alphatocopherol content in humans.
        Clin. Chim. Acta. 1991; 204: 57
        • Lavy A.
        • Brook G.J.
        • Dankner G.
        • Amotz A.M.
        • Aviram M.
        Enhanced in vitro oxidation of plasma lipoprotein derived from hypercholesterolemic patients.
        Metabolism. 1991; 40: 794
        • Babiy A.V.
        • Gebicky J.M.
        • Sullivan D.R.
        Increased oxidazibility of plasma lipoproteins in diabetic patients can be decreased by probucol therapy and is not due to glycation.
        Biochem. Pharmacol. 1992; 43: 995
        • Regnstrom J.N.
        • Nilsson J.
        • Tornavall P.
        • Landou C.
        • Hamsten A.
        Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man.
        Lancet. 1992; 339: 1183
        • Fredrickson D.S.
        • Levy R.I.
        • Lees R.S.
        Fat transport in lipoproteins. An integrated approach to mechanisms and disorders.
        N. Engl. J. Med. 1967; 276: 34
        • Fredrickson D.S.
        • Levy R.I.
        • Lees R.S.
        Fat transport in lipoproteins. An integrated approach to mechanisms and disorders.
        N. Engl. J. Med. 1967; 276: 94
        • Fredrickson D.S.
        • Levy R.I.
        • Lees R.S.
        Fat transport in lipoproteins. An integrated approach to mechanisms and disorders.
        N. Engl. J. Med. 1967; 276: 148
        • Fredrickson D.S.
        • Levy R.I.
        • Lees R.S.
        Fat transport in lipoproteins. An integrated approach to mechanisms and disorders.
        N. Engl. J. Med. 1967; 276: 215
        • Fredrickson D.S.
        • Levy R.I.
        • Lees R.S.
        Fat transport in lipoproteins. An integrated approach to mechanisms and disorders.
        N. Engl. J. Med. 1967; 276: 273
        • Garrow J.S.
        Energy Balance and Obesity in Man.
        Elsevier Biomedical Press, Amsterdam1978
        • Ciba-Geigy Ltd
        Geigy Scientific Tables.
        Ciba-Geigy Ltd, Basle1981
        • Travia L.
        Manuale di scienza dell' alimentazione,.
        Il pensiero Scientifico, Rome1974
        • Cominacini L.
        • Zocca I.
        • Garbin U.
        • Davoli A.
        • Compri R.
        • Brunetti L.
        • Bosello 0.
        Long-term effect of a low-fat, high-carbohydrate diet on plasma lipids of pa tients affected by familial endogenous hypertriglyceridemia.
        Am. J. Clin. Nutr. 1988; 48: 57
        • Havel R.J.
        • Eder M.A.
        • Bragdon J.M.
        The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum.
        J. Clin. Invest. 1955; 34: 1345
        • Block W.D.
        • Jarret Jr., M.J.
        • Levine J.R.
        Use of a single color reagent to improve the automated determination of serum total cholesterol.
        in: Skeggs Jr., L.T. Automation in Analytical Chemistry. Mediad, New York1974: 345-353
        • Kessler G.
        • Lederer H.
        Fluorimetric measurement of triglycerides.
        in: Skeggs Jr., L.T. Automation in Analytical Chemistry. Mediad, New York1965: 341-350
        • Lowry O.H.
        • Rosebrough N.J.
        • Far A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265
        • Sata T.
        • Havel R.J.
        • Jones A.L.
        Characterization of subfractions of triglyceride-rich lipoproteins separated by gel chromatography from blood plasma of normolipemic and hyperlipemic humans.
        J. Lipid Res. 1972; 18: 465
        • Lepage G.
        • Roy C.C.
        Direct transesterification of all classes of lipids in one-step reaction.
        J. Lipid Res. 1986; 27: 114
        • Cominacini L.
        • Garbin U.
        • Davoli A.
        • Micciolo R.
        • Bosello 0.
        • Gaviraghi G.
        • Scuro L.A.
        • Pastorino A.M.
        A simple test for predisposition to LDL oxidation based on the fluorescence development during coppercatalyzed oxidative modification.
        J. Lipid Res. 1991; 32: 32
        • Lehhmann J.
        • Martin H.L.
        Improved direct determination of alpha- and gamma-tocopherol in plasma and platelets by liquid chromatography, with fluorescence detection.
        Clin. Chem. 1982; 28: 1784
        • Judkins M.P.
        Selective coronary arteriography, part 1 (A percutaneous transfemoral technic).
        Radiology. 1967; 89: 815
        • Palinski W.
        • Rosenfeld M.E.
        • Yla-Herttuala S.
        • Gurtner G.C.
        • Socher S.S.
        • Butler S.W.
        • Partasarathy S.
        • Carew T.E.
        • Steinberg D.
        • Witztum J.L.
        Low density lipoprotein undergoes oxidative modification in vivo.
        in: 2nd Edn. Proc. Natl. Acad. Sci. USA. 86. 1989: 1372
        • Yla-Herttuala S.
        • Palinsky W.
        • Rosenfeld M.E.
        • Parthasarathy S.
        • Carew T.E.
        • Butler S.
        • Witztum J.L.
        • Steinberg D.
        Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man.
        J. Clin. Invest. 1989; 84: 1086
        • Viener A.
        • Brook J.G.
        • Aviram M.
        Abnormal plasma lipoprotein composition in hypercholesterolaemic patients induces platelet activation.
        Eur. J. Clin. Invest. 1984; 14: 207
        • Tribble D.L.
        • Holl L.G.
        • Wood P.D.
        • Krauss R.M.
        Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size.
        Atherosclerosis. 1992; 93: 189
        • Aviram M.
        • Lund-Katz S.
        • Phillips M.C.
        • Chait A.
        The influence of the triglyceride content of low density lipoprotein on the interaction of apolipoportein B-100 with cells.
        J. Biol. Chem. 1988; 263: 16842
        • Kinoshita M.
        • Krul E.S.
        • Schonfeld G.
        Modification of the core lipids of low density lipoproteins produces selective alterations in the expression of apoB-100 epitopes.
        J. Lipid Res. 1990; 31: 701
        • De Graaf J.
        • Hak-Lammer H.
        • Hectors M.
        • Demacker P.
        • Hendriks J.
        • Stalenhoef A.
        Enhanced suscep- tibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects.
        Arterioscler. Thromb. 1991; 11: 298
        • Shen M.
        • Krauss M.S.
        • Lindgren F.T.
        • Forte T.M.
        Heterogeneity of serum low density lipoproteins in normal human subjects.
        J. Lipid Res. 1981; 22: 236
        • Austin M.A.
        • Breslow J.L.
        • Hennekens C.H.
        • Buring J.E.
        • Wilett W.C.
        • Krauss R.M.
        Low density lipoprotein subclass patterns and risk of myocardial infarction.
        J. Am. Med. Assoc. 1988; 260: 1917
        • Chahboun S.
        • Tallineau C.
        • Pontcharraud R.
        • Guettier A.
        • Piriou A.
        Polyunsaturated fatty acid profiles and alpha-tocopherol levels in plasma and whole blood incubated with copper: evidence of inhibition of lipoperoxidation in plasma by hemolysate.
        Biochim. Biophys. Acta. 1990; 1042: 324
        • Wang T.
        • Yu W.
        • Powell W.S.
        Formation of monohydroxy derivatives of arachidonic acid, linoleic acid and oleic acid during oxidation of low density lipoprotein by copper ions and endothelial cells.
        J. Lipid Res. 1992; 33: 525