Advertisement

Different expression of modified low density lipoprotein receptors in rabbit peritoneal macrophages and Kupffer cells

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      We have previously reported that mouse peritoneal macrophages have three types of modified low density lipoprotein (LDL) receptors. One is specific for acetylated LDL (Ac-LDL), the second is for oxidized LDL (Ox-LDL), and the third recognizes both (Arai, H. et al. (1989) Biochem. Biophys. Res. Commun. 159, 1375–1382). In the current study, the characteristics of modified LDL receptors in rabbit peritoneal macrophages and Kupffer cells from rabbits were investigated. Cross-competition studies of the degradation assay between Ox-LDL and Ac-LDL in rabbit peritoneal macrophages showed that the degradation of 125I-labeled Ox-LDL was almost completely inhibited by an excess amount of unlabeled Ac-LDL. On the other hand, an excess amount of unlabeled Ox-LDL suppressed 125I-labeled Ac-LDL degradation only partially. In contrast, in Kupffer cells an excess amount of unlabeled Ox-LDL inhibited the degradation of 125I-labeled Ac-LDL almost completely, whereas the degradation of 125I-labeled Ox-LDL was inhibited only partially by Ac-LDL. Scatchard analysis of binding assay showed that rabbit peritoneal macrophages have a single class of receptor for Ox-LDL, which binds maximally 0.31 μg/mg cellular protein (Bmax) with an apparent dissociation constant (Kd) of 19.3 μg/ml, and two classes of receptors for Ac-LDL; one with high affinity (Bmax 0.025 μg/mg cellular protein, Kd 0.040μg/ml) and the other with low affinity (Bmax 0.08 μg/mg cellular protein, Kd 11.31 μg/ml, On the other hand, Kupffer cells have two classes for Ox-LDL; one is a high affinity receptor (Bmax 0.53 μg/mg cellular protein, Kd 0.99 μg/ml) and the other is a low affinity receptor (Bmax 3.71 μg/mg cellular protein, Kd 16.2 μg/ml) and a single class for Ac-LDL (Bmax 0.60 μg/mg cellular protein, Kd 7.24 μg/ml). These results indicate that rabbit peritoneal macrophages have two kinds of modified LDL receptors; one is specific for Ac-LDL, and the other recognizes both Ox-LDL and Ac-LDL. These cells, thereby, have no specific receptor for Ox-LDL as was seen in mouse peritoneal macrophages. On the other hand, rabbit Kupffer cells have a receptor which recognizes Ox-LDL specifically. However, a specific receptor for Ac-LDL does not exist in rabbit Kupffer cells.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fowler S.
        • Shio H.
        • Haley W.J.
        Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations.
        Lab. Invest. 1979; 41: 372
        • Gerrity R.
        Dietary induced atherogenesis in swine; morphology of the intima in prelesion stages.
        Am. J. Pathol. 1981; 103: 181
        • Buja L.M.
        • Kita T.
        • Goldstein J.L.
        • Watanabe Y.
        • Brown M.S.
        Cellular pathology of progressive atherosclerosis in the WHHL rabbit. An animal model of familial hypercholesterolemia.
        Arteriosclerosis. 1983; 3: 87
        • Tsukada T.
        • Rosenfeld M.
        • Ross R.
        • Gown A.M.
        Immunocytochemical analysis of cellular components in atherosclerotic lesions: Use of monoclonal antibodies with the Watanabe and fat-fed rabbit.
        Arteriosclerosis. 1986; 6: 601
        • Goldstein J.L.
        • Ho Y.K.
        • Basu S.K.
        • Brown M.S.
        Binding site on macrophages that mediates uptake and degradation of acetylate low density lipoprotein, producing massive cholesterol deposition.
        in: 8th edn. Proc. Natl. Acad. Sci. USA. 76. 1979: 333
        • Brown M.S.
        • Ho Y.K.
        • Goldstein J.L.
        The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters.
        J. Biol. Chem. 1980; 255: 9344
        • Steinbrecher U.P.
        • Parthasarathy S.
        • Leake D.S.
        • Witztum J.L.
        • Steinberg D.
        Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.
        in: 8th edn. Proc. Natl. Acad. Sci. USA. 81. 1984: 3883
        • Henriksen T.
        • Mahoney E.M.
        • Steinberg D.
        Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins.
        in: 8th edn. Proc. Nail. Acad. Sci. USA. 78. 1981: 6499
        • Heinecke J.W.
        • Baker L.
        • Rosen H.
        • Chait A.
        Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells.
        J. Clin. Invest. 1986; 77: 757
        • Parthasarathy S.
        • Fong L.G.
        • Otero D.
        • Steinberg D.
        Recognition of solubilized apoprotiens from delipidated, oxidized low density lipoprotein (LDL) by the acetyl-LDL receptor.
        in: 8th edn. Proc. Natl. Acad. Sci. USA. 84. 1987: 537
        • Kita T.
        • Nagano Y
        • Yokode M.
        • et al.
        Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia.
        in: 8th edn. Proc. Natl. Acad. Sci. USA. 84. 1987: 5928
        • Carew T.E.
        • Schwenke D.C.
        • Steinberg D.x
        Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: Evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit.
        in: 8th edn. Proc. Natl. Acad. Sci. USA. 84. 1987: 7725
        • Parthasarathy S.
        • Wieland E.
        • Steinberg D.
        A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein.
        in: 8th edn. Proc. Natl. Acad. Sci. USA. 86. 1989: 1046
        • Ylä-Herttuala S.
        • Palinski W.
        • Rosenfeld M.E.
        • et al.
        Evidence for the presence of oxidatively-modified low density lipoprotein in atherosclerotic lesions of rabbit and man.
        J. Clin. Invest. 1989; 84: 1086
        • O'Brien K.
        • Nagano Y.
        • Gown A.
        • Kita T.
        • Chait A.
        Probucol treatment affects the cellular composition but not anti-oxidized low density lipoprotein im munoreactivity of plaques from Watanabe heritable hyperlipidemic rabbits.
        Arterioscler. Thromb. 1991; 11: 751
        • Ylä-Herttuala S.
        • Rosenfeld M.E.
        • Parthasarathy S.
        • et al.
        Gene expression in macrophage-rich human atherosclerotic lesions 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts.
        J. Clin. Invest. 1991; 87: 1146
        • Arai H.
        • Kita T.
        • Yokode M.
        • Narumiya S.
        • Kawai C.
        Multiple receptors for modified low density lipoproteins in mouse peritoneal macrophages: Different uptake mechanisms for acetylated and oxidized low density lipoproteins.
        Biochem. Biophys. Res. Commun. 1989; 159: 1375
        • Sparrow C.P.
        • Parthasarathy S.
        • Steinberg D.
        A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein.
        J. Biol. Chem. 1989; 264: 2599
        • Van Berkel T.J.C.
        • Nagelkerke J.F.
        • Harkes L.
        • Kuijt J.K.
        Processing of acetylated human low-density lipoprotein by parenchymal and non-parenchymal cells involvement of calmodulin?.
        Biochem. J. 1982; 208: 493
        • Nagelkerke J.F.
        • Barto K.P.
        • Van Berkel T.J.C.
        In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer and parenchymal cells.
        J. Biol. Chem. 1983; 258: 12221
        • Van Berkel T.J.C.
        • DeRijke Y.B.
        • Kruijt J.K.
        Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats recognition by various scavenger receptors on Kupffer and endothelial liver cells.
        J. Biol. Chem. 1991; 266: 2282
        • Bouwens L.
        • Baekeland M.
        • Wisse E.
        Importance of local proliferation in the expanding Kupffer cell population of rat liver after zymosan stimulation and partial hepatectomy.
        Hepatology. 1984; 4: 213
        • Wake K.
        • Decker K.
        • Kirm A.
        • et al.
        Cell biology and kinetics of Kupffer cells in the liver.
        Int. Rev. Cytol. 1989; 190: 173
        • Watanabe Y.
        Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit): incidence and development of atherosclerosis and xanthoma.
        Atherosclerosis. 1980; 36: 261
        • Tanzawa K.
        • Shimada Y.
        • Kuroda M.
        • Tsujita Y.
        • Arai M.
        • Watanabe Y.
        WHHL-rabbit: a low density lipoprotein receptor-deficient animal model for familial hypercholesterolemia.
        FEBS Lett. 1980; 118: 81
        • Kodama T.
        • Reddy P.
        • Kishimoto C.
        • Krieger M.
        Purification and characterization of bovine acetyl low density lipoprotein receptor.
        in: 8th edn. Proc. Nad. Acad. Sci. USA. 85. 1988: 9238
        • Matsumoto A.
        • Naito M.
        • Itakura H.
        • et al.
        Human macrophage scavenger receptors: Primary structure, expression and localization in atherosclerotic lesions.
        in: 8th edn. Proc. Nad. Acad. Sci. USA. 87. 1990: 9133
        • Watanabe Y.
        • Ito T.
        • Saeki M.
        • et al.
        Hypolipidemic effects of CS-500 (ML-236B) in WHHL-rabbit, a heritable animal model for hyperlipidemia.
        Atherosclerosis. 1981; 38: 27
        • Shimada Y.
        • Tanzawa K.
        • Kuroda M.
        • Tsujita Y.
        • Arai M.
        • Watanabe Y.
        Biochemical characterization of skin fibroblasts derived from WHHL-rabbit, a notable animal model for familial hypercholesterolemia.
        Eur. J. Biochem. 1981; 118: 557
        • Kita T.
        • Brown M.S.
        • Watanabe Y.
        • Goldstein J.L.
        Deficiency of low density lipoprotein receptors in liver and adrenal gland of the WHHL-rabbit, an animal model of familial hypercholesterolemia.
        in: 8th edn. Proc. Nad. Acad. Sci. USA. 78. 1981: 2268
        • Attie A.D.
        • Pittman R.C.
        • Watanabe Y.
        • Steinberg D.
        Low density lipoprotein receptor deficiency in cultured hepatocytes of the WHHL-rabbit: further evidence of two pathways for catabolism of exogenous protein.
        J. Biol. Chem. 1981; 256: 9789
        • Bilheimer D.W.
        • Watanabe Y.
        • Kita T.
        Impaired receptor-mediated catabolism of low density lipoprotein in the WHHL-rabbit, an animal model of familial hypercholesterolemia.
        in: 8th edn. Proc. Nad. Acad. Sci. USA. 79. 1982: 3305
        • Goldstein J.L.
        • Kita T.
        • Brown M.S.
        Defective lipoprotein receptors and atherosclerosis. Lessions from an animal counterpart of familial hypercholesterolemia.
        N. Engl. J. Med. 1983; 309: 288
        • Ishii K.
        • Kita T.
        • Kume N.
        • Nagano Y.
        • Kawai C.
        Uptake of acetylated LDL by peritoneal macrophages obtained from normal and Watanabe heritable hyperlipidemic rabbits, an animal model for familial hypercholesterolemia.
        Biochim. Biophys. Acta. 1988; 962: 387
        • Havel R.J.
        • Eder H.A.
        • Bragdon J.H.
        The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum.
        J. Clin. Invest. 1955; 34: 1343
        • Yokode M.
        • Kita T.
        • Kikawa Y.
        • Ogorochi T.
        • Narumiya S.
        • Kawai C.
        Stimulated arachidonate metabolism during foam cell transformation of macro phages with oxidized low density lipoprotein.
        J. Clin. Invest. 1988; 81: 720
        • Brown M.S.
        • Goldstein J.L.
        • Krieger M.
        • Ho Y.K.
        • Anderson R.G.W.
        Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins.
        J. Cell Biol. 1979; 82: 597
        • Lowry O.H.
        • Rosebrough M.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265
        • Bakkeren H.F.
        • Kuipers F.
        • Vonk R.J.
        • Van Berkel T.J.C.
        Evidence for reverse cholesterol transport in vivo from liver endothelial cells to parenchymal cells and bile by high-density lipoprotein.
        Biochem. J. 1990; 268: 685
        • Berliner J.A.
        • Territo M.C.
        • Sevanian A.
        • et al.
        Minimally modified low density lipoprotein stimulates monocyte endothelial interactions.
        J. Clin. Invest. 1990; 85: 1260
        • Kodama T.
        • Freeman M.
        • Rohrer L.
        • Zabrecky J.
        • Matsudaira P.
        • Krieger M.
        Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils.
        Nature. 1990; 343: 531
        • Rohrer L.
        • Freeman M.
        • Kodama T.
        • Penman M.
        • Krieger M.
        Coiled coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II.
        Nature. 1990; 343: 570
        • Freeman M.
        • Ekkel Y.
        • Rohrer L.
        • et al.
        Expression of type I and type II bovine scavenger receptors in Chinese hamster ovary cells: Lipid droplet accumulation and nonreciprocal cross competition by acetylated and oxidized low density lipoprotein.
        in: 8th edn. Proc. Nad. Acad. Sci. USA. 88. 1991: 4931