Advertisement

Immunoreactivity of apo B towards monoclonal antibodies that inhibit the LDL-receptor interaction: effects of LDL oxidation

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      We studied the immunochemical stability of the epitopes for six monoclonal antibodies to human apolipoprotein B-100 upon Cu 2+-mediated (20 μM) oxidation of LDL. The antibodies used in this study, some of which are known to interfere with the interaction of LDL with their cellular receptors, recognize epitopes in the amino terminal region (Mb 19), in the middle part (6B, 2A, 7A, and 9A) and near as 3500 (Mb 47) of native apo B. All antibodies except one (7A) recognized native and oxidized LDL (OxLDL) equally well; the immunoreactivity of the epitope for Ab 7A was markedly reduced upon LDL oxidation. Since antibodies 2A, 7A, 9A, and Mb 47 inhibit the LDL-receptor interaction and OxLDL poorly interact in vitro with the LDL receptor we conclude that: (1) various epitopes for monoclonal antibodies against native apo B are spared upon LDL oxidation; and (2) the epitopes for antibodies 2A, 9A, and Mb 47 do not define a unique domain of apo B directly involved in the binding of LDL to their receptor.

      Keywords

      Abbreviations:

      EFAF-BSA (essential fatty acid free-BSA), BHT (butylhydroxy toluene), BSA (bovine serum albumin), LDL (low density lipoprotein), OxLDL (oxidatively modified low density lipoprotein), PBS (phosphate buffer saline)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brown M.S.
        • Goldstein J.L.
        Lipoprotein metabolism in the macrophage: implication for cholesterol deposition in atherosclerosis.
        Annu. Rev. Biochem. 1983; 52: 223
        • Matsumoto A.
        • Naito M.
        • Itakura H.
        • Ikemoto S.
        • Asaoka H.
        • Hayakawa I.
        • Kanamori H.
        • Aburatani H.
        • Takaku F.
        • Suzuki H.
        • Kobari Y.
        • Miyai T.
        • Takahashi K.
        • Cohen E.
        • Wydro R.
        • Housman D.E.
        • Kodama T.
        Human macrophages scavenger receptors: primary structure, expression and localization in atherosclerotic lesions.
        in: 8th edn. Proc. Nail. Acad. Sci. USA. 87. 1990: 9133
        • Steinbrecher U.P.
        • Parthasarathy S.
        • Leake D.S.
        • Witztum J.L.
        • Steinberg D.
        Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.
        in: 8th edn. Proc. Natl. Acad. Sci. USA. 82. 1984: 3000
        • Schuh J.
        • Novogrodsky A.
        • Haschemeyer R.H.
        Inhibition of lymphocyte mitogenesis by autoxidized lowdensity lipoprotein.
        Biochem. Biophys. Res. Commun. 1978; 84: 763
        • Jurgens G.
        • Hoff H.F.
        • Chisolm III, G.M.
        • Esterbauer H.
        Modification of human serum low density lipoproteins by oxidation. Characterization and pathophysiological implications.
        Chem. Phys. Lipids. 1987; 45: 315
        • Fong L.G.
        • Parthasarathy S.
        • Witztum J.L.
        • Steinberg D.
        Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100.
        J. Lipid Res. 1987; 28: 1466
        • Gandjini H.
        • Gambert P.
        • Athias A.
        • Lallemant C.
        Resistance to LDL oxidative modifications of an Nterminal apolipoprotein B epitope.
        Atherosclerosis. 1991; 89: 83
        • Zawadski Z.
        • Milne R.W.
        • Marcel Y.L.
        An immunochemical marker of low density lipoprotein oxidation.
        J. Lipid Res. 1989; 30: 885
        • Havel R.J.
        • Eder H.A.
        • Bragdon J.H.
        The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum.
        J. Clin. Invest. 1955; 34: 1345
        • Noble R.P.
        Electrophoretic separation of plasma lipoproteins in agarose gel.
        J. Lipid Res. 1968; 9: 693
        • Marcovina S.
        • France D.
        • Phillips R.A.
        • Mao S.J.T.
        Monoclonal antibodies can precipitate low density lipoprotein. I. Characterization and use in determining apolipoprotein B.
        Clin. Chem. 1985; 31: 1654
        • Young S.G.
        • Witztum J.L.
        • Casal D.C.
        • Curtiss L.K.
        • Berstein S.
        Conservation of the low density lipoprotein receptor-binding domain of apoprotein B. Demon stration by a new monoclonal antibody, MB47.
        Arteriosclerosis. 1986; 6: 178
        • Fantappiè S.
        • Corsini A.
        • Sidoli A.
        • Marcovina S.
        • Uboldi P.
        • Granata A.
        • Da Ros B.
        • Fumagalli R.
        • Catapano A.L.
        Monoclonal antibodies to human low density lipoprotein identify distinct areas on apolipoprotein B-100 relevant to the LDL-receptor interaction.
        J. Lipid Res. 1992; 33: 1111
        • Tsao B.P.
        • Curtiss L.K.
        • Edgington T.S.
        Immunochemical heterogeneity of human plasma apolipoprotein B. II. Expression of apolipoprotein B epitopes on native lipoproteins.
        J. Biol. Chem. 1982; 257: 15222
        • Bilheimer D.W.
        • Eisenberg S.
        • Levy R.I.
        The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations.
        Biochim. Biophys. Acta. 1973; 250: 212
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265
        • Goldstein J.L.
        • Ho Y.K.
        • Basu S.K.
        • Brown M.S.
        Binding site on macrophages that mediates the uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition.
        in: 8th edn. Proc. Nad. Acad. Sci. USA. 76. 1979: 333
        • Roma P.
        • Bernini F.
        • Fogliatto R.
        • Bertulli S.M.
        • Negri S.
        • Fumagalli R.
        • Catapano A.L.
        Defective catabolism of oxidized LDL by J774 murine macrophages.
        J. Lipid Res. 1992; 33: 819
        • Roma P.
        • Catapano A.L.
        • Bertulli S.M.
        • Varesi L.
        • Fumagalli R.
        • Bernini F.
        Oxidized LDL increase free cholesterol and fail to stimulate cholesterol esterifica tion in murine macrophages.
        Biochem. Biophys. Res. Commun. 1990; 171: 123
        • Yang C.Y.
        • Gu Z.W.
        • Weng S.A.
        • Kim T.W.
        • Chen S.H.
        • Pownall H.J.
        • Sharp P.M.
        • Liu S.W.
        • Li W.H.
        • Gotto Jr., A.M.
        • Chan L.
        Structure of apolipopro tein B-100 of human low density lipoproteins.
        Arteriosclerosis. 1989; 9: 96
        • Young S.G.
        Recent progress in understanding apolipoprotein B.
        Circulation. 1990; 82: 1574