Relationship between mevalonate pathway and arterial myocyte proliferation: in vitro studies with inhibitors of HMG-CoA reductase

      This paper is only available as a PDF. To read, Please Download here.


      The role of mevalonate and its products (isoprenoids) in the control of cellular proliferation was examined by investigating the effect of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (vastatins) on growth and on cholesterol biosynthesis of cultured arterial myocytes (SMC). Simvastatin (S) and fluvastatin (F), but not pravastatin (P), decreased the rate of growth of rat vascular SMC. The inhibition, evaluated as cell number, was dose-dependent with IC50 values of 2.8 and 2.2 μM for S and F, respectively; P (1–500 μM) was inactive. The inhibition of cell growth induced by 3.5 μM S (70% decrease) was prevented completely by the addition of 100 μM mevalonate, partially (70–85%) by the addition of 10 μM geraniol, 10 μM farnesol and 5 μM geranylgeraniol, but not by the addition of squalene, confirming the specific role of isoprenoid metabolites in regulating cell proliferation. All the tested vastatins inhibited the incorporation of [14C]acetate into cholesterol but P had 800 times lower potency than S and F. Similar results were obtained in SMC from human femoral artery. At least 80% inhibition of cholesterol synthesis was necessary to induce a decrease in SMC proliferation. To further investigate the relationship between cholesterol synthesis and cell growth, two enantiomers of F were investigated. The enantiomer more active on HMG-CoA reductase was 70- and 1.6-fold more potent on arterial myocyte proliferation than its antipode and the racemic mixture, respectively. A similar IC50 proliferation/cholesterol synthesis ratio for all the inhibitory vastatins (S, F and its enantiomers), regardless of their different potency, supports a causal relationship between the mevalonate synthetic pathway and cell proliferation.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Ross R.
        The pathogenesis of atherosclerosis. An update.
        N. Engl. J. Med. 1986; 314: 488
        • Wissler R.W.
        Update on the pathogenesis of atherosclerosis.
        Am. J. Med. 1991; 91: 1B-3S
        • Ross R.
        Polypeptide growth factors and atherosclerosis.
        Trends Cardiovasc. Med. 1991; 1: 277
        • Goldstein J.L.
        • Brown M.S.
        Regulation of mevalonate pathway.
        Nature. 1990; 343: 425
        • Maltese W.A.
        Posttranslational modification of proteins by isoprenoids in mammalian cells.
        FASEB J. 1990; 4: 3319
        • Habenicht A.J.R.
        • Glomset J.A.
        • Ross R.
        Relation of cholesterol and mevalonic acid to the cell cycle in smooth muscle and Swiss 3T3 cells stimulated to divide by platelet-derived growth factor.
        J. Biol. Chem. 1980; 255: 5134
        • Fairbanks K.P.
        • Witte L.D.
        • Goodman D.S.
        Relationship between mevalonate and mitogenesis in human fibroblasts stimulated with platelet-derived growth factor.
        J. Biol. Chem. 1984; 259: 1546
        • Doyle J.W.
        • Kandutsch A.A.
        Requirement for mevalonate in cycling cells: quantitative and temporal aspects.
        J. Cell. Physiol. 1988; 137: 133
        • Chen H.W.
        Role of cholesterol metabolism in cell growth.
        in: 4th Edn. Fed. Proc.43. 1984: 126
        • Quesney-Huneeus V.
        • Galick H.A.
        • Siperstein M.D.
        • Erickson S.K.
        • Spencer T.A.
        • Nelson J.A.
        The dual role of mevalonate in the cell cycle.
        J. Biol. Chem. 1983; 258: 378
        • Brown M.S.
        • Goldstein J.L.
        Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth.
        J. Lipid Res. 1980; 21: 505
        • Quesney-Huneeus V.
        • Wiley M.H.
        • Siperstein M.D.
        Essential role for mevalonate synthesis in DNA replication.
        in: 4th Edn. Proc. Nad. Acad. Sci. USA. 76. 1979: 5056
        • Kabakoff B.D.
        • Doyle J.W.
        • Kandutsch A.A.
        Relationships among dolichyl phosphate, glycoprotein synthesis, and cell culture growth.
        Arch. Biochem. Biophys. 1990; 276: 382
        • Cuthbert J.A.
        • Lipsky P.E.
        Inhibition by 6fluoromevalonate demonstrates that mevalonate or one of the mevalonate phosphates is necessary for lymphocyte proliferation.
        J. Biol. Chem. 1990; 265: 18568
        • Corsini A.
        • Raiteri M.
        • Soma M.
        • Fumagalli A.
        • Paoletti A.
        Simvastatin but not pravastatin inhibits the proliferation of rat aorta myocytes.
        Pharm. Res. 1991; 23: 173
        • Grundy S.M.
        HMG-CoA reductase inhibitors for treatment of hypercholesterolemia.
        N. Engl. J. Med. 1988; 319: 24
        • Kathawala F.G.
        HMG-CoA reductase inhibitors: an exciting development in the treatment of hyperlipoproteinemia.
        Med. Res. Rev. 1991; 11: 121
        • Ross R.
        The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers.
        J. Cell Biol. 1971; 50: 172
        • Skalli O.
        • Ropraz P.
        • Trezciak A.
        • Benzonana G.
        • Gillessen D.
        • Gabbiani G.
        A monoclonal antibody against alfa-smooth muscle actin: a new probe for smooth muscle differentiation.
        J. Cell Biol. 1986; 103: 2787
        • Corsini A.
        • Bernini F.
        • Cighetti G.
        • Soma M.
        • Galli G.
        • Fumagalli R.
        Lipophilic β-adrenoceptor antagonists stimulate cholesterol biosynthesis in human skin fibroblasts.
        Biochem. Pharmacol. 1987; 36: 1901
        • Brown M.S.
        • Faust J.R.
        • Goldstein J.L.
        • Kaneko I.
        • Endo A.
        Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase.
        J. Biol. Chem. 1978; 253: 1121
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265
        • Fisher R.A.
        • Yates F.
        Statistical Tables for Biological, Agricultural and Medical Research.
        in: 4th Edn. Oliver & Boyd, Edinburgh1953: 60
        • Parker R.A.
        • Clark R.W.
        • Sit S.
        • Lanier T.L.
        • Grosso R.A.
        • Wright J.J.K.
        Selective inhibition of cholesterol synthesis in liver versus extrahepatic tissues by HMG-CoA reductase inhibitors.
        J. Lipid Res. 1990; 31: 1271
        • Glomset J.A.
        • Gelb M.H.
        • Farnsworth C.C.
        Prenyl proteins in eukaryotic cells: a new type of membrane anchor.
        Trends Biochem. Sci. 1990; 15: 139
        • Joly A.
        • Edwards P.A.
        Biological effects of isoprenoids.
        Curr. Opin. Lipidol. 1991; 2: 283
        • Sinensky M.
        • Lutz R.J.
        The prenylation of proteins.
        BioEssays. 1992; 14: 25
        • Casey P.J.
        Biochemistry of protein prenylation.
        J. Lipid Res. 1992; 33: 1731
        • Kaneko L.
        • Hazama-Schimada Y.
        • Endo A.
        Inhibitory effects on lipid metabolism in cultured cells of ML-236B, a potent inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase.
        Eur. J. Biochem. 1978; 87: 313
        • Falke P.
        • Mattiasson I.
        • Stavenow L.
        • Hood B.
        Effects of a competitive inhibitor (mevinolin) of 3-hydroxy3-methyglutaryl coenzyme A reductase on human bovine endothelial cells, fibroblasts and smooth muscle cells in vitro.
        Pharmacol. Toxicol. 1989; 64: 173
        • Jakobisiak M.
        • Bruno S.
        • Skierski J.S.
        • Darzynkiewicz Z.
        Cell cycle-specific effects of lovastatin.
        in: Proc. Natl. Acad. Sci. USA. 88. 1991: 3628
        • Farnsworth C.C.
        • Gelb M.H.
        • Glomset J.A.
        Identification of geranylgeranyl-modified proteins in HeLa cells.
        Science. 1990; 247: 320
        • Schmidt R.A.
        • Schneider C.J.
        • Glomset J.A.
        Evidence for post-translational incorporation of a product of mevalonic acid into Swiss 3T3 cell proteins.
        J. Biol. Chem. 1984; 259: 10175
        • Hancock J.F.
        • Magee A.I.
        • Childs J.E.
        • Marshall C.J.
        All ras proteins are polyisoprenylated but only some are palmitoylated.
        Cell. 1989; 57: 1167
        • Repko E.M.
        • Maltese W.A.
        Post-translational isoprenylation of cellular proteins is altered in response to mevalonate availability.
        J. Biol. Chem. 1989; 264: 9945
        • Sinensky M.
        • Beck L.A.
        • Leonard S.
        • Evans R.
        Differential inhibitory effects of lovastatin on protein isoprenylation and sterol synthesis.
        J. Biol. Chem. 1990; 265: 19937
        • Casey P.J.
        • Solski P.A.
        • Der C.J.
        • Buss J.E.
        p21ras is modified by a farnesyl isoprenoid.
        in: Proc. Natl. Acad. Sci. USA. 86. 1989: 8323
        • Sepp-Lorenzino L.
        • Rao S.
        • Coleman P.S.
        Cellcycle-dependent, differential prenylation of proteins.
        Eur. J. Biochem. 1991; 200: 579
        • Farnsworth C.C.
        • Wolda S.L.
        • Gelb M.H.
        • Glomset J.A.
        Human lamin B contains a farnesylated cysteine residue.
        J. Biol. Chem. 1989; 264: 20422
        • Schafer W.R.
        • Kim R.
        • Steme R.
        • Thomer J.
        • Kim S.
        • Rine J.
        Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans.
        Science. 1989; 245: 379
        • Yamane H.K.
        • Farnsworth C.C.
        • Xie H.
        • Howald W.
        • Fung B.K.K.
        • Clarke S.
        • Gelb M.H.
        • Glomset J.A.
        Brain G protein gamma subunits contain an all-trans geranylgeranyl-cysteine methyl ester at their carboxyl termini.
        in: Proc. Natl. Acad. Sci. USA. 7. 1990: 5868
        • Yamane H.K.
        • Farnsworth C.C.
        • Xie H.
        • Evans T.
        • Howald W.N.
        • Gelb M.H.
        • Glomset J.A.
        • Clarke S.
        • Fung B.K.K.
        Membrane-binding domain of the small G protein G25K contains an S-(all-trans-geranylgeranyl)cysteine methyl ester at its carboxyl terminus.
        in: Proc. Natl. Acad. Sci. USA. 88. 1991: 286
        • Epstein W.W.
        • Lever D.C.
        • Rilling H.C.
        Prenylated proteins: synthesis of geranylgeranylcysteine and identification of this amino acid as a component of proteins in CHO cells.
        in: Proc. Nad. Acad. Sci. USA. 87. 1990: 7352
        • Fenton R.G.
        • Kung H.
        • Longo D.L.
        • Smith M.R.
        Regulation of intracellular actin polymerization by prenylated cellular proteins.
        J. Cell Biol. 1992; 117: 347
        • Mittelman A.
        • Evans J.T.
        • Chheda G.B.
        Cytokinins as chemotherapeutic agents.
        Ann. NY Acad. Sci. 1975; 255: 225
        • Scott W.A.
        Hydrophilicity and the differential pharmacology of pravastatin.
        in: Wood C. Lipid Management: Pravastatin and the Differential Pharmacology of HMG-CoA Reductase Inhibitors. London Round Table Series No. 16. Royal Society of Medicine Service, 1989: 17
        • Soma M.R.
        • Donetti E.
        • Parolini C.
        • Mazzini G.
        • Ferrari C.
        • Fumagalli R.
        • Paoletti R.
        HMGCoA reductase inhibitors: in vivo effects on carotid intimal thickening in normocholesterolemic rabbits.
        Arterioscler. Thromb. 1993; 13: 571
        • Pentikainen P.J.
        • Saraheimo M.
        • Schwartz J.L
        • Amin R.D.
        • Schwartz M.S.
        • Brunner-Ferber F.
        • Rogers J.D.
        Comparative pharmacokinetics of lovastatin, sim vastatin and pravastatin in humans.
        J. Clin. Pharmacol. 1992; 32: 136
        • Vickers S.
        • Duncan C.A.
        • Chen I.
        • Rosegay A.
        • Duggan D.E.
        Metabolic disposition studies on simvastatin, a cholesterol-lowering prodrug.
        Drug Metab. Disposition. 1990; 18: 138
        • Ip J.H.
        • Fuster V.
        • Badimon L.
        • Badimon J.
        • Taubman M.B.
        • Chesebro J.H.
        Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation.
        J. Am. Coll. Cardiol. 1990; 15: 1667
        • Sahni R.
        • Maniet A.R.
        • Voci G.
        • Banka V.S.
        Prevention of restenosis by lovastatin after succesful coronary angioplasty.
        Am. Heart J. 1991; 121: 1600
        • Lee Y.J.
        • Daida H.
        • Yokoi H.
        • Miyano H.
        • Takaya J.
        • Sakurai H.
        • Yamaguchi H.
        • Abe A.
        • Noma A.
        Does lipid lowering therapy prevent early restenosis after coronary angioplasty?.
        in: 9th International symposium on Atherosclerosis. 1991: 206a