Advertisement

Acetyl-low density lipoprotein receptors on rat mesangial cells

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      To elucidate whether mesangial cells have any scavenger functions for modified lipoproteins, surface binding and cholesteryl ester (CE) formation by acetyl-low density lipoproteins (acetyl-LDL) have been studied in cultured rat renal mesangial cells. Specific binding kinetics for acetyl-LDL were observed with Kd = 28.3 μg/ml and Bmax = 1.1 ng/μg cell protein at 0°C. The fluorescence microscopic finding demonstrated the enhanced uptake of DiI-acetyl-LDL in mesangial cells. Incorporation of [14C]oleate into CE was enhanced to 6-fold by loading 30 μg/ml of acetyl-LDL on 10 μg/ml of [14C]oleate-bovine serum albumin conjugate as compared with the control without lipoproteins (P < 0.05). The CE formation was completely inhibited by chloroquine. The light microscopic finding demonstrated the increased CE deposition by acetyl-LDL, resulting in foam cell formation. These results indicate biochemically and morphologically that the mesangial cells take up acetyl-LDL by receptor-mediated endocytosis, and that cholesterols in acetyl-LDL are converted to CE, resulting in an increased cellular cholesterol content. In conclusion, mesangial cells may have a scavenger function similar to macrophages.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lovett D.H.
        • Szamel M.
        • Ryan J.L.
        • Sterzel R.B.
        • Gemsa D.
        • Resch K.
        Interleukin 1 and the glomerular mesangium, I. Purification and characterization of a mesangial cell-derived autogrowth factor.
        J. Immunol. 1986; 136: 3700
        • Lovett D.H.
        • Resch K.
        • Gemsa D.
        Interleukin I and the glomerular mesangium, II. Monokine stimulation of mesangial cell prostanoid secretion.
        Am. J. Pathol. 1987; 129: 543
        • Arnqvist H.J.
        • Ballermann B.J.
        • King G.L.
        Receptors for and effects of insulin and IGF-I in rat glomerular mesangial cells.
        Am. J. Physiol. 1988; 254 (Cell Physiol., 23): C411
        • Schlondorff D.
        Production of platelet activating factor in glomeruli and cultured glomerular mesangial cells.
        Am. J. Physiol. 1986; 250: F1123
        • Neuwirth R.
        Evidence for immunogloblin Fc receptor mediated prostaglandin and platelet activating factor formation by cultured rat mesangial cells.
        J. Clin. Invest. 1988; 82: 936
        • Striker G.E.
        • Striker L.J.
        Biology of disease, Glomerular cell culture.
        Lab. Invest. 1985; 53: 122
        • Ferando R.L.
        • Varghese Z.
        • Moorhead J.F.
        Interaction of modified low-density lipoproteins with rat and human glomerular mesangial cells.
        Nephrol. Dial. Transplant. 1992; 7: 1150
        • Coritsidis G.
        • Rifici V.
        • Gupta G.
        • Rie J.
        • Shan Z.
        • Neugarten J.
        • Schlondorff D.
        Preferential binding of oxidized LDL to rat glomeruli in vivo and cultured mesangial cells in vitro.
        Kidney Int. 1991; 9: 858
        • Brown M.S.
        • Goldstein J.L.
        Lipoprotein metabolism in the macrophage: Implication for cholesterol deposition in atherosclerosis.
        Annu. Rev. Biochem. 1983; 52: 223
        • Kobori S.
        • Nakamura N.
        • Uzawa H.d
        • Shichiri M.
        Influence of apolipoprotein E polymorphism on plasma lipid and apolipoprotein levels, and clinical characteristics of type III hyperlipoproteinemia due to apolipoprotein E phenotype E2/2 in Japan.
        Atherosclerosis. 1988; 69: 81
        • Basu S.K.
        • Goldstein J.L.
        • Anderson R.G.W.
        • Brown M.S.
        Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts.
        in: Proc. Natl. Acad. Sci. USA. 73. 1976: 3178
        • Murakami M.
        • Horiuchi S.
        • Takata K.
        • Morino Y.
        Distinction in the mode of receptor-mediated endocytosis between high density lipoprotein and acetylated high density lipoprotein: Evidence for high density lipoprotein receptor-mediated cholesterol transfer.
        J. Biochem. 1987; 101: 729
        • Goldstein J.L.
        • Basu S.K.
        • Brown M.S.
        Receptor-mediated endocytosis of low-density lipoprotein in cultured cells.
        Methods Enzymol. 1983; 98: 241
        • Mene P.
        • Dunn M.J.
        Contractile effects of TXAZ and endoperoxide analogues on cultured rat glomerular mesangial cells.
        Am. J. Physiol. 1986; 251: F1029
        • Wasserman J.
        • Santiago A.
        • Rifici V.
        • Holthofer H.
        • Scharschmidt L.
        • Epstein M.
        • Schlondorff D.
        Interactions of low density lipoprotein with rat mesangial cells.
        Kidney Int. 1989; 35: 1168
        • Wheeler D.C.
        • Fernando R.L.
        • Gillett P.T.
        • Zaruba J.
        • Kingstone D.
        • Varghese Z.
        • Moorhead J.F.
        Characterisation of the binding of low-density lipoproteins to cultured rat mesangial cells.
        Nephrol. Dial. Transplant. 1991; 6: 701
        • Fogelman A.M.
        • Schchter I.
        • Seager J.
        • Hokom M.
        • Child J.S.
        • Edwards P.A.
        Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages.
        in: Proc. Natl. Acad. Sci. USA. 77. 1980: 2214
        • Steinberg D.
        • Parthasarathy S.
        • Carew T.E.
        • Khoo J.C.
        • Witztum J.L.
        Modification of low density lipoprotein that increases its atherogenicity.
        N. Engl. J. Med. 1989; 320: 915
        • Rayner H.C.
        • Horsburgh T.
        • Brown S.L.
        • Lavender F.L.
        • Winder A.F.
        • Walls J.
        Receptor-mediated endocytosis of low-density lipoprotein by cultured human glomerular cells.
        Nephron. 1990; 55: 292
        • Zollinger H.U.
        • Mihatsch M.J.
        Light, electron and immunofluorescent microscopy and clinical aspects.
        in: Chung J. Sobin L.H. Renal Disease. Springer-Verlag, Berlin1978: 453
        • Zollinger H.U.
        • Mihatsch M.J.
        Light, electron and immunofluorescent microscopy and clinical aspects.
        in: Chung J. Sobin L.H. Renal Disease. Springer-Verlag, Berlin1978: 564
        • Hiramatsu M.
        • Karashima S.
        • Hattori S.
        • Matsuda I.
        • Maeda H.
        A case of lecithin: cholesterol acyltransferase (LCAT) deficiency and hypothyroidism.
        Int. J. Pediatr. Nephrol. 1984; 5: 183
        • McKenzie I.F.C.
        • Kincaid-Smith P.
        Foam cells in renal glomerulus.
        J. Pathol. 1969; 97: 151
        • Suzaki K.
        • Kobori S.
        • Ueno S.
        • Uehara M.
        • Kayashima T.
        • Takeda H.
        • Fukuda S.
        • Takahashi K.
        • Nakamura N.
        • Uzawa H.
        • Shichiri M.
        Effect of plasmapheresis on familial type III hyperlipoproteinemia associated with glomerular lipidosis, nephrotic syndrome and diabetes mellitus.
        Atherosclerosis. 1990; 80: 181