A new insight into resveratrol as an atheroprotective compound: Inhibition of lipid peroxidation and enhancement of cholesterol efflux


      Resveratrol, a polyphenolic constituent of red wine, is known for its anti-atherogenic properties and is thought to be beneficial in reducing the incidence of cardiovascular diseases (CVD). However, the mechanism of action by which it exerts its anti-atherogenic effect remains unclear. In this study, we investigated the relationship between the antioxidant effects of resveratrol and its ability to promote cholesterol efflux. We measured the formation of conjugated dienes and the rate of lipid peroxidation, and observed that resveratrol inhibited copper- and irradiation-induced LDL and HDL oxidation as observed by a reduction in oxidation rate and an increase in the lag phase (p < 0.05). We used DPPH screening to measure free radical scavenging activity and observed that resveratrol (0–50 μM) significantly reduced the content of free radicals (p < 0.001). Respect to its effect on cholesterol homeostasis, resveratrol also enhanced apoA-1-mediated cholesterol efflux (r2 = 0.907, p < 0.05, linear regression) by up-regulating ABCA-1 receptors, and reduced cholesterol influx or uptake in J774 macrophages (r2 = 0.89, p < 0.05, linear regression). Incubation of macrophages (J774, THP-1 and MPM) with Fe/ascorbate ion, attenuated apoA-1 and HDL3-mediated cholesterol efflux whereas resveratrol (0–25 μM) significantly redressed this attenuation in a dose-dependent manner (p < 0.001). Resveratrol thus appears to be a natural antioxidant that enhances cholesterol efflux. These properties make it a potential natural antioxidant that could be used to prevent and treat CVD.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Superko H.R.
        Drug therapy and the prevention of atherosclerosis in humans.
        Am J Cardiol. 1989; 64: 31G-38G
        • Das S.
        • Das D.K.
        Resveratrol: a therapeutic promise for cardiovascular diseases.
        Recent Patents Cardiovasc Drug Discov. 2007; 2: 133-138
        • Norata G.D.
        • Marchesi P.
        • Passamonti S.
        • et al.
        Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice.
        Atherosclerosis. 2007; 191: 265-271
        • Wang Z.
        • Zou J.
        • Cao K.
        • et al.
        Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels.
        Int J Mol Med. 2005; 16: 533-540
        • Araya J.
        • Rodrigo R.
        • Orellana M.
        • Rivera G.
        Red wine raises plasma HDL and preserves long-chain polyunsaturated fatty acids in rat kidney and erythrocytes.
        Br J Nutr. 2001; 86: 189-195
        • Auger C.
        • Caporiccio B.
        • Landrault N.
        • et al.
        Red wine phenolic compounds reduce plasma lipids and apolipoprotein B and prevent early aortic atherosclerosis in hypercholesterolemic golden Syrian hamsters (Mesocricetus auratus).
        J Nutr. 2002; 132: 1207-1213
        • Belguendouz L.
        • Fremont L.
        • Linard A.
        Resveratrol inhibits metal ion-dependent and independent peroxidation of porcine low-density lipoproteins.
        Biochem Pharmacol. 1997; 53: 1347-1355
        • Wang Z.
        • Huang Y.
        • Zou J.
        • et al.
        Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro.
        Int J Mol Med. 2002; 9: 77-79
        • Araim O.
        • Ballantyne J.
        • Waterhouse A.L.
        • Sumpio B.E.
        Inhibition of vascular smooth muscle cell proliferation with red wine and red wine polyphenols.
        J Vasc Surg. 2002; 35: 1226-1232
        • Avellone G.
        • Di Garbo V.
        • Campisi D.
        • et al.
        Effects of moderate Sicilian red wine consumption on inflammatory biomarkers of atherosclerosis.
        Eur J Clin Nutr. 2006; 60: 41-47
        • Sevov M.
        • Elfineh L.
        • Cavelier L.B.
        Resveratrol regulates the expression of LXR-alpha in human macrophages.
        Biochem Biophys Res Commun. 2006; 348: 1047-1054
        • Lusis A.J.
        • Atherosclerosis
        Nature. 2000; 407: 233-241
        • Aviram M.
        • Rosenblat M.
        Macrophage-mediated oxidation of extracellular low density lipoprotein requires an initial binding of the lipoprotein to its receptor.
        J Lipid Res. 1994; 35: 385-398
        • Cherki M.
        • Berrougui H.
        • Isabelle M.
        • et al.
        Effect of PON1 polymorphism on HDL antioxidant potential is blunted with aging.
        Exp Gerontol. 2007; 42: 815-824
        • Glomset J.A.
        The plasma lecithins:cholesterol acyltransferase reaction.
        J Lipid Res. 1968; 9: 155-167
        • Bortnick A.E.
        • Rothblat G.H.
        • Stoudt G.
        • et al.
        The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines.
        J Biol Chem. 2000; 275: 28634-28640
        • de La Llera-Moya M.
        • Connelly M.A.
        • Drazul D.
        • et al.
        Scavenger receptor class B type I affects cholesterol homeostasis by magnifying cholesterol flux between cells and HDL.
        J Lipid Res. 2001; 42: 1969-1978
        • Wang N.
        • Silver D.L.
        • Costet P.
        • Tall A.R.
        Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1.
        J Biol Chem. 2000; 275: 33053-33058
        • Brunham L.R.
        • Kruit J.K.
        • Iqbal J.
        • et al.
        Intestinal ABCA1 directly contributes to HDL biogenesis in vivo.
        J Clin Invest. 2006; 116: 1052-1062
        • Kennedy M.A.
        • Barrera G.C.
        • Nakamura K.
        • et al.
        ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation.
        Cell Metab. 2005; 1: 121-131
        • Zou J.
        • Huang Y.
        • Chen Q.
        • et al.
        Effects of resveratrol on oxidative modification of human low density lipoprotein.
        Chin Med J (Engl). 2000; 113: 99-102
        • Fremont L.
        • Belguendouz L.
        • Delpal S.
        Antioxidant activity of resveratrol and alcohol-free wine polyphenols related to LDL oxidation and polyunsaturated fatty acids.
        Life Sci. 1999; 64: 2511-2521
        • Mensor L.L.
        • Menezes F.S.
        • Leitao G.G.
        • et al.
        Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method.
        Phytother Res. 2001; 15: 127-130
        • Sattler W.
        • Mohr D.
        • Stocker R.
        Rapid isolation of lipoproteins and assessment of their peroxidation by high-performance liquid chromatography postcolumn chemiluminescence.
        Methods Enzymol. 1994; 233: 469-489
        • Khalil A.
        • Fortin J.P.
        • LeHoux J.G.
        • Fulop T.
        Age-related decrease of dehydroepiandrosterone concentrations in low density lipoproteins and its role in the susceptibility of low density lipoproteins to lipid peroxidation.
        J Lipid Res. 2000; 41: 1552-1561
        • Fricke H.
        The chemical action of Röntgen rays on dilute ferrosulfate solutions as measure of dose.
        Am J Roentgenol Radium Ther Nucl Med. 1927; 18: 429-432
        • Berrougui H.
        • Cloutier M.
        • Isabelle M.
        • Khalil A.
        Phenolic-extract from argan oil (Argania spinosa L.) inhibits human low-density lipoprotein (LDL) oxidation and enhances cholesterol efflux from human THP-1 macrophages.
        Atherosclerosis. 2006; 184: 389-396
        • Pinchuk I.
        • Lichtenberg D.
        The mechanism of action of antioxidants against lipoprotein peroxidation, evaluation based on kinetic experiments.
        Prog Lipid Res. 2002; 41: 279-314
        • Linton M.F.
        • Atkinson J.B.
        • Fazio S.
        Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation.
        Science. 1995; 267: 1034-1037
        • Hajj Hassan H.
        • Blain S.
        • Boucher B.
        • et al.
        Structural modification of plasma HDL by phospholipids promotes efficient ABCA1-mediated cholesterol release.
        J Lipid Res. 2005; 46: 1457-1465
        • Berrougui H.
        • Isabelle M.
        • Cloutier M.
        • Grenier G.
        • Khalil A.
        Age-related impairment of HDL-mediated cholesterol efflux.
        J Lipid Res. 2007; 48: 328-336
        • Bonnefont-Rousselot D.
        Gamma radiolysis as a tool to study lipoprotein oxidation mechanisms.
        Biochimie. 2004; 86: 903-911
        • Marcil V.
        • Delvin E.
        • Sane A.T.
        • Tremblay A.
        • Levy E.
        Oxidative stress influences cholesterol efflux in THP-1 macrophages: role of ATP-binding cassette A1 and nuclear factors.
        Cardiovasc Res. 2006; 72: 473-482
        • Girona J.
        • LaVille A.E.
        • Sola R.
        • Motta C.
        • Masana L.
        HDL derived from the different phases of conjugated diene formation reduces membrane fluidity and contributes to a decrease in free cholesterol efflux from human THP-1 macrophages.
        Biochim Biophys Acta. 2003; 1633: 143-148
        • Gugliucci A.
        • Menini T.
        Three different pathways for human LDL oxidation are inhibited in vitro by water extracts of the medicinal herb Achyrocline satureoides.
        Life Sci. 2002; 71: 693-705
        • Kaliora A.C.
        • Dedoussis G.V.
        • Schmidt H.
        Dietary antioxidants in preventing atherogenesis.
        Atherosclerosis. 2006; 187: 1-17
        • Xu B.J.
        • Yuan S.H.
        • Chang S.K.
        Comparative studies on the antioxidant activities of nine common food legumes against copper-induced human low-density lipoprotein oxidation in vitro.
        J Food Sci. 2007; 72: S522-S527
        • Tunstall-Pedoe H.
        • Kuulasmaa K.
        • Mahonen M.
        • et al.
        Contribution of trends in survival and coronary-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Monitoring trends and determinants in cardiovascular disease.
        Lancet. 1999; 353: 1547-1557
        • Tsai S.H.
        • Lin-Shiau S.Y.
        • Lin J.K.
        Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol.
        Br J Pharmacol. 1999; 126: 673-680
        • de Lorgeril M.
        • Salen P.
        Diet as preventive medicine in cardiology.
        Curr Opin Cardiol. 2000; 15: 364-370
        • Haberland M.E.
        • Fong D.
        • Cheng L.
        Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits.
        Science. 1988; 241: 215-218
        • Regnstrom J.
        • Nilsson J.
        • Tornvall P.
        • Landou C.
        • Hamsten A.
        Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man.
        Lancet. 1992; 339: 1183-1186
        • Heinecke J.W.
        Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis.
        Atherosclerosis. 1998; 141: 1-15
        • Belguendouz L.
        • Fremont L.
        • Gozzelino M.T.
        Interaction of transresveratrol with plasma lipoproteins.
        Biochem Pharmacol. 1998; 55: 811-816
        • Zini R.
        • Morin C.
        • Bertelli A.
        • Bertelli A.A.
        • Tillement J.P.
        Effects of resveratrol on the rat brain respiratory chain.
        Drugs Exp Clin Res. 1999; 25: 87-97
        • Fredenrich A.
        • Bayer P.
        Reverse cholesterol transport, high density lipoproteins and HDL cholesterol: recent data.
        Diab Metab. 2003; 29: 201-205
        • Jaouad L.
        • Milochevitch C.
        • Khalil A.
        PON1 paraoxonase activity is reduced during HDL oxidation and is an indicator of HDL antioxidant capacity.
        Free Radic Res. 2003; 37: 77-83
        • Pirillo A.
        • Uboldi P.
        • Kuhn H.
        • Catapano A.L.
        15-Lipoxygenase-mediated modification of high-density lipoproteins impairs SR-BI- and ABCA1-dependent cholesterol efflux from macrophages.
        Biochim Biophys Acta. 2006; 1761: 292-300
        • Oram J.F.
        • Heinecke J.W.
        ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease.
        Physiol Rev. 2005; 85: 1343-1372
        • Vaughan A.M.
        • Oram J.F.
        ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions.
        J Lipid Res. 2003; 44: 1373-1380
        • Tsang C.
        • Higgins S.
        • Duthie G.G.
        • et al.
        The influence of moderate red wine consumption on antioxidant status and indices of oxidative stress associated with CHD in healthy volunteers.
        Br J Nutr. 2005; 93: 233-240
        • Francis G.A.
        High density lipoprotein oxidation: in vitro susceptibility and potential in vivo consequences.
        Biochim Biophys Acta. 2000; 1483: 217-235
        • Panzenboeck U.
        • Raitmayer S.
        • Reicher H.
        • et al.
        Effects of reagent and enzymatically generated hypochlorite on physicochemical and metabolic properties of high density lipoproteins.
        J Biol Chem. 1997; 272: 29711-29720
        • Trudel K.
        • Sinnett D.
        • James R.W.
        • et al.
        Iron-ascorbic acid-induced oxidant stress and its quenching by paraoxonase 1 in HDL and the liver: comparison between humans and rats.
        J Cell Biochem. 2005; 96: 404-411
        • Ferretti G.
        • Bacchetti T.
        • Negre-Salvayre A.
        • et al.
        Structural modifications of HDL and functional consequences.
        Atherosclerosis. 2006; 184: 1-7
        • Rifici V.A.
        • Khachadurian A.K.
        Oxidation of high density lipoproteins: characterization and effects on cholesterol efflux from J774 macrophages.
        Biochim Biophys Acta. 1996; 1299: 87-94