Periodontal bacteria in human carotid atherothrombosis as a potential trigger for neutrophil activation


      • Periodontal bacterial DNA has been detected in cardiovascular samples.
      • Intraplaque hemorrhage has been associated with plaque rupture.
      • Intraplaque hemorrhage was associated with neutrophil activation markers.
      • Hemoglobin levels were associated with the detection of Tannerella forsythia DNA.
      • T. forsythia may induced neutrophil activation within hemorrhagic atherosclerotic plaques.



      Epidemiological, biological and clinical links between periodontal and cardiovascular diseases are now well established. Several human studies have detected bacterial DNA corresponding to periodontal pathogens in cardiovascular samples. Intraplaque hemorrhage has been associated with a higher risk of atherosclerotic plaque rupture, potentially mediated by neutrophil activation. In this study, we hypothesized that plaque composition may be related to periodontal pathogens.


      Carotid culprit plaque samples were collected from 157 patients. Macroscopic characterization was performed at the time of collection: presence of blood, lipid core, calcification and fibrosis. Markers of neutrophil activation released by carotid samples were quantified (myeloperoxidase or MPO, cell-free DNA and DNA-MPO complexes). PCR analysis using specific primers for Porphyromonas gingivalis, Aggregatibacter actinomycetemcommitans, Treponema denticola, Prevotella intermedia and Tannerella forsythia was used to detect DNA from periodontal pathogens in carotid tissues. In addition, bacterial lipopolysaccharide (LPS) and Immunoglobulins G against T. forsythia were quantified in atherosclerotic carotid conditioned medium.


      Intraplaque hemorrhage was present in 73/157 carotid samples and was associated with neutrophil activation, reflected by the release of MPO, cell-free DNA and MPO-DNA complexes. LPS levels were also linked to intraplaque hemorrhage but not with the neutrophil activation markers. Seventy-three percent of the carotid samples were positive for periodontal bacterial DNA. Furthermore, hemoglobin levels were associated with the detection of T. forsythia and neutrophil activation/inflammation markers.


      This study suggests a potential role of periodontal microorganisms, especially T. forsythia, in neutrophil activation within hemorrhagic atherosclerotic carotid plaques.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Bouchard P.
        • Boutouyrie P.
        • D'Aiuto F.
        • Deanfield J.
        • Deliargyris E.
        • Fernandez-Avilés F.
        • et al.
        European workshop in periodontal health and cardiovascular disease consensus document.
        Eur Heart J Suppl. 2010; 12: B13-B22
        • Dietrich T.
        • Sharma P.
        • Walter C.
        • Weston P.
        • Beck J.
        The epidemiological evidence behind the association between periodontitis and incident atherosclerotic cardiovascular disease.
        J Clin Periodontol. 2013; 14: S70-S84
        • Blaizot A.
        • Vergnes J.N.
        • Nuwwareh S.
        • Amar J.
        • Sixou M.
        Periodontal diseases and cardiovascular events: meta-analysis of observational studies.
        Int Dent J. 2009; 59: 197-209
        • Humphrey L.L.
        • Fu R.
        • Buckley D.I.
        • Freeman M.
        • Helfand M.
        Periodontal disease and coronary heart disease incidence: a systematic review and meta-analysis.
        J Gen Intern Med. 2008; 23: 2079-2086
        • Bahekar A.A.
        • Singh S.
        • Saha S.
        • Molnar J.
        • Arora R.
        The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis.
        Am Heart J. 2007; 154: 830-837
        • Mustapha I.Z.
        • Debrey S.
        • Oladubu M.
        • Ugarte R.
        Markers of systemic bacterial exposure in periodontal disease and cardiovascular disease risk: a systematic review and meta-analysis.
        J Periodontol. 2007; 78: 2289-2302
        • Khader Y.S.
        • Albashaireh Z.S.
        • Alomari M.A.
        Periodontal diseases and the risk of coronary heart and cerebrovascular diseases: a meta-analysis.
        J Periodontol. 2004; 75: 1046-1053
        • Chukkapalli S.S.
        • Rivera M.F.
        • Velsko I.M.
        • Lee J.Y.
        • Chen H.
        • Zheng D.
        • et al.
        Invasion of oral and aortic tissues by oral spirochete Treponema denticola in ApoE(−/−) mice causally links periodontal disease and atherosclerosis.
        Infect Immun. 2014; 82: 1959-1967
        • Velsko I.M.
        • Chukkapalli S.S.
        • Rivera M.F.
        • Lee J.Y.
        • Chen H.
        • Zheng D.
        • et al.
        Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis.
        PLoS One. 2014; 9 (e97811)
        • Reyes L.
        • Herrera D.
        • Kozarov E.
        • Roldan S.
        • Progulske-Fox A.
        Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology.
        J Clin Periodontol. 2013; 14: S30-S50
        • Kozarov E.V.
        • Dorn B.R.
        • Shelburne C.E.
        • Dunn Jr., W.A.
        • Progulske-Fox A.
        Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis.
        Arterioscler Thromb Vasc Biol. 2005; 25: e17-18
        • Li L.
        • Michel R.
        • Cohen J.
        • Decarlo A.
        • Kozarov E.
        Intracellular survival and vascular cell-to-cell transmission of Porphyromonas gingivalis.
        BMC Microbiol. 2008; 8: 26
        • Rafferty B.
        • Jonsson D.
        • Kalachikov S.
        • Demmer R.T.
        • Nowygrod R.
        • Elkind M.S.
        • et al.
        Impact of monocytic cells on recovery of uncultivable bacteria from atherosclerotic lesions.
        J Intern Med. 2011; 270: 273-280
        • Hayashi C.
        • Gudino C.V.
        • Gibson 3rd, F.C.
        • Genco C.A.
        Review: pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways.
        Mol Oral Microbiol. 2010; 25: 305-316
        • Cairo F.
        • Gaeta C.
        • Dorigo W.
        • Oggioni M.R.
        • Pratesi C.
        • Pini Prato G.P.
        • et al.
        Periodontal pathogens in atheromatous plaques. A controlled clinical and laboratory trial.
        J Periodontal Res. 2004; 39: 442-446
        • Tonetti M.S.
        • Van Dyke T.E.
        Periodontitis and atherosclerotic cardiovascular disease: consensus report of the joint EFP/AAP Workshop on periodontitis and systemic diseases.
        J Clin Periodontol. 2013; 14: S24-S29
        • Delbosc S.
        • Alsac J.M.
        • Journe C.
        • Louedec L.
        • Castier Y.
        • Bonnaure-Mallet M.
        • et al.
        Porphyromonas gingivalis participates in pathogenesis of human abdominal aortic aneurysm by neutrophil activation. Proof of concept rats.
        PLoS One. 2011; 6 (e18679)
        • Schenkein H.A.
        • Loos B.G.
        Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases.
        J Clin Periodontol. 2013; 14: S51-S69
        • Go A.S.
        • Mozaffarian D.
        • Roger V.L.
        • Benjamin E.J.
        • Berry J.D.
        • Blaha M.J.
        • et al.
        Heart disease and stroke statistics–2014 update: a report from the american heart association.
        Circulation. 2014; 129: e28-e292
        • Leclercq A.
        • Houard X.
        • Loyau S.
        • Philippe M.
        • Sebbag U.
        • Meilhac O.
        • et al.
        Topology of protease activities reflects atherothrombotic plaque complexity.
        Atherosclerosis. 2007; 191: 1-10
        • Leclercq A.
        • Houard X.
        • Philippe M.
        • Ollivier V.
        • Sebbag U.
        • Meilhac O.
        • et al.
        Involvement of intraplaque hemorrhage in atherothrombosis evolution via neutrophil protease enrichment.
        J Leukoc Biol. 2007; 82: 1420-1429
        • Michel J.B.
        • Delbosc S.
        • Ho-Tin-Noe B.
        • Leseche G.
        • Nicoletti A.
        • Meilhac O.
        • et al.
        From intraplaque haemorrhages to plaque vulnerability: biological consequences of intraplaque haemorrhages.
        J Cardiovasc Med (Hagerstown). 2012; 13: 628-634
        • Michel J.B.
        • Virmani R.
        • Arbustini E.
        • Pasterkamp G.
        Intraplaque haemorrhages as the trigger of plaque vulnerability.
        Eur Heart J. 2011; 32 (1985a, 1985b, 1985c): 1977-1985
        • Massberg S.
        • Grahl L.
        • von Bruehl M.L.
        • Manukyan D.
        • Pfeiler S.
        • Goosmann C.
        • et al.
        Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases.
        Nat Med. 2010; 16: 887-896
        • Yipp B.G.
        • Petri B.
        • Salina D.
        • Jenne C.N.
        • Scott B.N.
        • Zbytnuik L.D.
        • et al.
        Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo.
        Nat Med. 2012; 18: 1386-1393
        • Martin-Ventura J.L.
        • Duran M.C.
        • Blanco-Colio L.M.
        • Meilhac O.
        • Leclercq A.
        • Michel J.B.
        • et al.
        Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis.
        Circulation. 2004; 110: 2216-2219
        • Rondeau P.
        • Navarra G.
        • Cacciabaudo F.
        • Leone M.
        • Bourdon E.
        • Militello V.
        Thermal aggregation of glycated bovine serum albumin.
        Biochim Biophys Acta. 2010; 1804: 789-798
        • Ashimoto A.
        • Chen C.
        • Bakker I.
        • Slots J.
        Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions.
        Oral Microbiol Immunol. 1996; 11: 266-273
        • Morillo J.M.
        • Lau L.
        • Sanz M.
        • Herrera D.
        • Martin C.
        • Silva A.
        Quantitative real-time polymerase chain reaction based on single copy gene sequence for detection of periodontal pathogens.
        J Clin Periodontol. 2004; 31: 1054-1060
        • Pussinen P.J.
        • Vilkuna-Rautiainen T.
        • Alfthan G.
        • Mattila K.
        • Asikainen S.
        Multiserotype enzyme-linked immunosorbent assay as a diagnostic aid for periodontitis in large-scale studies.
        J Clin Microbiol. 2002; 40: 512-518
        • Aimetti M.
        • Romano F.
        • Nessi F.
        Microbiologic analysis of periodontal pockets and carotid atheromatous plaques in advanced chronic periodontitis patients.
        J Periodontol. 2007; 78: 1718-1723
        • Vitkov L.
        • Klappacher M.
        • Hannig M.
        • Krautgartner W.D.
        Extracellular neutrophil traps in periodontitis.
        J Periodontal Res. 2009; 44: 664-672
        • Armstrong M.T.
        • Rickles F.R.
        • Armstrong P.B.
        Capture of lipopolysaccharide (endotoxin) by the blood clot: a comparative study.
        PLoS One. 2013; 8 (e80192)
        • Haraszthy V.I.
        • Zambon J.J.
        • Trevisan M.
        • Zeid M.
        • Genco R.J.
        Identification of periodontal pathogens in atheromatous plaques.
        J Periodontol. 2000; 71: 1554-1560
        • Romano F.
        • Barbui A.
        • Aimetti M.
        Periodontal pathogens in periodontal pockets and in carotid atheromatous plaques.
        Minerva Stomatol. 2007; 56: 169-179
        • Figuero E.
        • Sanchez-Beltran M.
        • Cuesta-Frechoso S.
        • Tejerina J.M.
        • del Castro J.A.
        • Gutierrez J.M.
        • et al.
        Detection of periodontal bacteria in atheromatous plaque by nested polymerase chain reaction.
        J Periodontol. 2011; 82: 1469-1477
        • Socransky S.S.
        • Haffajee A.D.
        • Cugini M.A.
        • Smith C.
        • Kent Jr., R.L.
        Microbial complexes in subgingival plaque.
        J Clin Periodontol. 1998; 25: 134-144
        • Taylor J.J.
        • Preshaw P.M.
        • Lalla E.
        A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes.
        J Clin Periodontol. 2013; 14: S113-S134
        • Borgnakke W.S.
        • Ylostalo P.V.
        • Taylor G.W.
        • Genco R.J.
        Effect of periodontal disease on diabetes: systematic review of epidemiologic observational evidence.
        J Clin Periodontol. 2013; 14: S135-S152
        • Moreno P.R.
        • Purushothaman M.
        • Purushothaman K.R.
        Plaque neovascularization: defense mechanisms, betrayal, or a war in progress.
        Ann N. Y Acad Sci. 2012; 1254: 7-17
        • Costa P.Z.
        • Soares R.
        Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox.
        Life Sci. 2013; 92: 1037-1045
        • Aemaimanan P.
        • Amimanan P.
        • Taweechaisupapong S.
        Quantification of key periodontal pathogens in insulin-dependent type 2 diabetic and non-diabetic patients with generalized chronic periodontitis.
        Anaerobe. 2013; 22: 64-68
        • Socransky S.S.
        • Smith C.
        • Haffajee A.D.
        Subgingival microbial profiles in refractory periodontal disease.
        J Clin Periodontol. 2002; 29: 260-268
        • Lapponi M.J.
        • Carestia A.
        • Landoni V.I.
        • Rivadeneyra L.
        • Etulain J.
        • Negrotto S.
        • et al.
        Regulation of neutrophil extracellular trap formation by anti-inflammatory drugs.
        J Pharmacol Exp Ther. 2013; 345: 430-437
        • Gorbunov N.V.
        • Garrison B.R.
        • McDaniel D.P.
        • Zhai M.
        • Liao P.J.
        • Nurmemet D.
        • et al.
        Adaptive redox response of mesenchymal stromal cells to stimulation with lipopolysaccharide inflammagen: mechanisms of remodeling of tissue barriers in sepsis.
        Oxid Med Cell Longev. 2013; 2013: 186795
        • Sahingur S.E.
        • Xia X.J.
        • Alamgir S.
        • Honma K.
        • Sharma A.
        • Schenkein H.A.
        DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines.
        Mol Oral Microbiol. 2010; 25: 123-135
        • Posch G.
        • Andrukhov O.
        • Vinogradov E.
        • Lindner B.
        • Messner P.
        • Holst O.
        • et al.
        Structure and immunogenicity of the rough-type lipopolysaccharide from the periodontal pathogen Tannerella forsythia.
        Clin Vaccine Immunol. 2013; 20: 945-953
        • Murakami Y.
        • Higuchi N.
        • Nakamura H.
        • Yoshimura F.
        • Oppenheim F.G.
        Bacteroides forsythus hemagglutinin is inhibited by N-acetylneuraminyllactose.
        Oral Microbiol Immunol. 2002; 17: 125-128
        • Sharma A.
        Virulence mechanisms of Tannerella forsythia.
        Periodontol. 2000; 2010: 106-116
        • Lee H.R.
        • Jun H.K.
        • Choi B.K.
        Tannerella forsythia BspA increases the risk factors for atherosclerosis in ApoE mice.
        Oral Dis. 2013;
        • Haffajee A.D.
        • Socransky S.S.
        Relation of body mass index, periodontitis and Tannerella forsythia.
        J Clin Periodontol. 2009; 36: 89-99