Research Article| Volume 241, ISSUE 2, P615-623, August 2015

Retinoic acid inhibits tissue factor and HMGB1 via modulation of AMPK activity in TNF-α activated endothelial cells and LPS-injected mice


      • RA reduced TF expression via AMPK-dependent way in TNF-α-activated ECs.
      • PI3K inhibitor inhibited p-AMPK by RA but compound C unaffected p-Akt by RA.
      • RA inhibited NF-kB activity by inhibition of IkB degradation in TNF-activated ECs.
      • RA reduced HMGB1 in TNF-α-activated ECs in PI3K and AMPK-sensitive manners.
      • RA decreased fibrin deposition in liver, serum prothrombotic factors in LPS- mice.



      Retinoic acid (RA) is the active vitamin A derivative and has diverse immunomodulatory actions. We hypothesized that RA reduces prothrombotic mediators such as tissue factor (TF) in endothelial cells during inflammatory conditions via an AMPK-dependent pathway, which attenuates cardiovascular complications.


      RA significantly increased AMPK and Akt phosphorylation in a time- and concentration-dependent manner in endothelial cells (EC). RA downregulated TF expression at the transcriptional and translational levels in TNF-α activated ECs, which was reversed by the silencing of AMPK and transfection of DN-AMPK. Interestingly, the PI3-kinase inhibitor LY294002 reversed the RA effect on TF expression. Increased AMPK phosphorylation by RA was inhibited by LY294002. However, increased Akt phosphorylation was not reduced by compound C, indicating that PI3K/Akt signaling modulates AMPK activity. In addition, RA reduced HMGB1 release in TNF-α activated ECs, which was reversed by both LY294001 and siAMPK. Importantly, administration of RA (1 mg/kg) significantly reduced blood TF activity, circulating HMGB1 and PAI-1 levels and expression of hepatic TF mRNA as well as fibrin deposition in LPS (5 mg/kg)-injected mice.


      Taken together, the activation of PI3K/Akt by RA modulates AMPK activity in ECs and plays a crucial role in the inhibition of coagulatory factors such as TF, PAI-1, and HMGB1 in inflammatory conditions.

      Graphical abstract


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Fay W.P.
        • Garg N.
        • Sunkar M.
        Vascular functions of the plasminogen activation system.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1231-1237
        • Oksjoki R.
        • Kovanen P.T.
        • Meri S.
        • Pentikainen M.O.
        Function and regulation of the complement system in cardiovascular diseases.
        Front. Biosci. 2007; 12: 4696-4708
        • Weiler-Guettler H.
        • Christie P.D.
        • Beeler D.L.
        • Healy A.M.
        • Hancock W.W.
        • Rayburn H.
        • et al.
        A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state.
        J. Clin. Invest. 1998; 101: 1983-1991
        • Borissoff J.I.
        • Spronk H.M.
        • ten Cate H.
        The hemostatic system as a modulator of atherosclerosis.
        N. Engl. J. Med. 2011; 364: 1746-1760
        • Choi Q.
        • Hong K.H.
        • Kim J.E.
        • Kim H.K.
        Changes in plasma levels of natural anticoagulants in disseminated intravascular coagulation: high prognostic value of antithrombin and protein C in patients with underlying sepsis or severe infection.
        Ann. Lab. Med. 2014; 34: 85-91
        • Nemerson Y.
        Tissue factor and hemostasis.
        Blood. 1988; 71: 1-8
        • Zhang W.
        • Wang J.
        • Wang H.
        • Tang R.
        • Belcher J.D.
        • Viollet B.
        • et al.
        Acadesine inhibits tissue factor induction and thrombus formation by activating the phosphoinositide 3-kinase/Akt signaling pathway.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 1000-1006
        • Kim Y.M.
        • Kim M.Y.
        • Kim H.J.
        • Roh G.S.
        • Ko G.H.
        • Seo H.G.
        • et al.
        Compound C independent of AMPK inhibits ICAM-1 and VCAM-1 expression in inflammatory stimulants-activated endothelial cells in vitro and in vivo.
        Atherosclerosis. 2011; 219: 57-64
        • de Souza A.W.
        • Westra J.
        • Limburg P.C.
        • Bijl M.
        • Kallenberg C.G.
        HMGB1 in vascular diseases: its role in vascular inflammation and atherosclerosis.
        Autoimmun. Rev. 2012; 11: 909-917
        • Moreno J.A.
        • Sastre C.
        • Madrigal-Matute J.
        • Munoz-Garcia B.
        • Ortega L.
        • Burkly L.C.
        • et al.
        HMGB1 expression and secretion are increased via TWEAK-Fn14 interaction in atherosclerotic plaques and cultured monocytes.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 612-620
        • Bierhaus A.
        • Zhang Y.
        • Deng Y.
        • Mackman N.
        • Quehenberger P.
        • Haase M.
        • et al.
        Mechanism of the tumor necrosis factor alpha-mediated induction of endothelial tissue factor.
        J. Biol. Chem. 1995; 270: 26419-26432
        • Cacicedo J.M.
        • Yagihashi N.
        • Keaney Jr., J.F.
        • Ruderman N.B.
        • Ido Y.
        AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells.
        Biochem. Biophys. Res. Commun. 2004; 324: 1204-1209
        • Liu X.M.
        • Peyton K.J.
        • Shebib A.R.
        • Wang H.
        • Durante W.
        Compound C stimulates heme oxygenase-1 gene expression via the Nrf2-ARE pathway to preserve human endothelial cell survival.
        Biochem. Pharmacol. 2011; l82: 371-379
        • Ishii H.
        • Horie S.
        • Kizaki K.
        • Kazama M.
        Retinoic acid counteracts both the downregulation of thrombomodulin and the induction of tissue factor in cultured human endothelial cells exposed to tumor necrosis factor.
        Blood. 1992; 80: 2556-2562
        • Esmon C.T.
        The regulation of natural anticoagulant pathways.
        Science. 1987; 235: 1348-1352
        • Pawlinski R.
        • Mackman N.
        Cellular sources of tissue factor in endotoxemia and sepsis.
        Thromb. Res. 2010; 125: S70-S73
        • Shimizu A.
        • Yamada K.
        • Yamamoto S.
        • Lavelle J.M.
        • Barth R.N.
        • Robson S.C.
        • et al.
        Thrombotic microangiopathic glomerulopathy in human decay accelerating factor-transgenic swine-to-baboon kidney xenografts.
        J. Am. Soc. Nephrol. 2005; 16: 2732-2745
        • Crikis S.
        • Cowan P.J.
        • d'Apice A.J.
        Intravascular thrombosis in discordant xenotransplantation.
        Transplantation. 2006; 82: 1119-1123
        • Ross S.A.
        • McCaffery P.J.
        • Drager U.C.
        • De Luca L.M.
        Retinoids in embryonal development.
        Physiol. Rev. 2000; 80: 1021-1054
        • Xavier-Neto J.
        • Neville C.M.
        • Shapiro M.D.
        • Houghton L.
        • Wang G.F.
        • Nikovits Jr., W.
        • et al.
        A retinoic acid-inducible transgenic marker of sino-atrial development in the mouse heart.
        Development. 1999; 126: 2677-2687
        • Shimizu M.
        • Sakai H.
        • Shirakami Y.
        • Iwasa J.
        • Yasuda Y.
        • Kubota M.
        • et al.
        Acyclic retinoid inhibits diethylnitrosamine-induced liver tumorigenesis in obese and diabetic C57BLKS/J- +(db)/+Lepr(db) mice.
        Cancer Prev. Res. (Phila.). 2011; 4: 128-136
        • Manolescu D.C.
        • Sima A.
        • Bhat P.V.
        All-trans retinoic acid lowers serum retinol-binding protein 4 concentrations and increases insulin sensitivity in diabetic mice.
        J. Nutr. 2010; 140: 311-316
        • Zhao S.
        • Li R.
        • Li Y.
        • Chen W.
        • Zhang Y.
        • Chen G.
        Roles of vitamin A status and retinoids in glucose and fatty acid metabolism.
        Biochem. Cell. Biol. 2012; 90: 142-152
        • Badeanlou L.
        • Furlan-Freguia C.
        • Yang G.
        • Ruf W.
        • Samad F.
        Tissue factor-protease-activated receptor 2 signaling promotes diet-induced obesity and adipose inflammation.
        Nat. Med. 2011; 17: 1490-1497
        • Rao J.
        • Qian X.
        • Wang P.
        • Pu L.
        • Zhai Y.
        • Wang X.
        • et al.
        All-trans retinoic acid preconditioning protects against liver ischemia/reperfusion injury by inhibiting the nuclear factor kappa B signaling pathway.
        J. Surg. Res. 2013; 180: e99-e106
        • Gu J.
        • Ye S.
        • Wang S.
        • Sun W.
        • Hu Y.
        Metformin inhibits nuclear factor-kappaB activation and inflammatory cytokines expression induced by high glucose via adenosine monophosphate-activated protein kinase activation in rat glomerular mesangial cells in vitro.
        Chin. Med. J. (Engl.). 2014; 127: 1755-1760
        • Ha Y.M.
        • Park E.J.
        • Kang Y.J.
        • Park S.W.
        • Kim H.J.
        • Chang K.C.
        Valsartan independent of AT1 receptor inhibits tissue factor, TLR-2 and -4 expression by regulation of Egr-1 through activation of AMPK in diabetic conditions.
        J. Cell. Mol. Med. 2014; 18: 2031-2043
        • Huang B.P.
        • Lin C.H.
        • Chen H.M.
        • Lin J.T.
        • Cheng Y.F.
        • Kao S.H.
        AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-kappaB signaling in murine macrophages.
        DNA Cell Biol. 2015; 34: 133-141
        • Hattori Y.
        • Suzuki K.
        • Tomizawa A.
        • Hirama N.
        • Okayasu T.
        • Hattori S.
        • et al.
        Cilostazol inhibits cytokine-induced nuclear factor-kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells.
        Cardiovasc. Res. 2009; 81: 133-139
        • Kim H.G.
        • Hien T.T.
        • Han E.H.
        • Hwang Y.P.
        • Choi J.H.
        • Kang K.W.
        • et al.
        Metformin inhibits P-glycoprotein expression via the NF-kappaB pathway and CRE transcriptional activity through AMPK activation.
        Br. J. Pharmacol. 2011; 162: 1096-1108
        • Tsoyi K.
        • Jang H.J.
        • Nizamutdinova I.T.
        • Kim Y.M.
        • Lee Y.S.
        • Kim H.J.
        • et al.
        Metformin inhibits HMGB1 release in LPS-treated RAW 264.7 cells and increases survival rate of endotoxaemic mice.
        Br. J. Pharmacol. 2011; 162: 1498-1508
        • Bauss F.
        • Droge W.
        • Mannel D.N.
        Tumor necrosis factor mediates endotoxic effects in mice.
        Infect. Immun. 1987; 55: 1622-1625
        • Parry G.C.
        • Mackman N.
        Transcriptional regulation of tisse factor expression in human endothelial cells.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 612-621
        • Guha M.
        • O'Connell M.A.
        • Pawlinski R.
        • Hollis A.
        • McGovern P.
        • et al.
        Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression.
        Blood. 2001; 98: 1429-1439
        • Luyendyk J.P.
        • Schabbauer G.A.
        • Tencati M.
        • Holscher T.
        • Pawlinski R.
        • Mackman N.
        Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages.
        J. Immunol. 2008; 180: 4218-4226
        • Scarpati E.M.
        • Sadler J.E.
        Regulation of endothelial cell coagulant properties. Modulation of tissue factor, plasminogen activator inhibitors, and thrombomodulin by phorbol 12-myristate 13-acetate and tumor necrosis factor.
        J. Biol. Chem. 1989; 264: 20705-20713