Advertisement

Intestinal absorption of triglyceride and cholesterol. Dietary and pharmacological inhibition to reduce cardiovascular risk

  • Emilio Ros
    Correspondence
    Tel./fax: +34-93-4537829
    Affiliations
    Lipid Clinic, Nutrition & Dietetics Service, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clı́nic i Provincial, C. Villarroel, 170, 08036 Barcelona, Spain
    Search for articles by this author

      Abstract

      Triglycerides and cholesterol are important biological lipids, and their excessive intake in the diet is relevant to the development of two prevalent cardiovascular risk factors, obesity and hypercholesterolemia. Because most lipids are essentially water-insoluble molecules, their transport within and absorption from the aqueous medium of intestinal contents is rather complex. This takes place in a series of orderly and interrelated steps, including emulsification, hydrolysis by specific esterases, micellar transport, mucosal absorption, re-synthesis of parent molecules in enterocytes, and assembly with apolipoproteins and other molecules to form chylomicrons, the secretory product of intestinal cells. Many of these processes, however, are not well characterized at the molecular level. While in health the intestinal absorption of triglycerides is very efficient, the same does not apply to cholesterol absorption. Besides being generally inefficient, cholesterol absorption is highly variable, with a between-subject variability that depends in part on genetic factors and an intra-individual variability, which may be modulated by physiological and dietary conditions. All of the sequential steps in intestinal lipid absorption can be interfered with by dietary components or drugs and thus are potential therapeutic targets for inducing a controlled malabsorption of triglyceride, useful in the treatment of obesity, or for rendering cholesterol absorption even more inefficient in an attempt to lower blood cholesterol levels. Nevertheless, intestinally derived cholesterol available to the liver exerts complex feedback regulation on whole-body cholesterol homeostasis that limits the efficacy of cholesterol absorption inhibitors to lower blood cholesterol. This review focuses first on present knowledge of the physiology of intestinal fat absorption, necessary to understand the ways to manipulate it in order to obtain the desired effects on dietary triglyceride and cholesterol disposition. The second part discusses old, present and future ways, both dietary and pharmacological, of interfering with cholesterol and triglyceride absorption to reduce blood cholesterol and energy acquisition, respectively.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Alfin-Slater R.B.
        • Aftergood L.
        Lipids.
        in: Goodhart R.S. Shils M.E. Modern Nutrition in Health and Disease. 6th ed. Lea & Febiger, Philadelphia, PA1980: 113-141
        • Small D.M.
        Surface and bulk interactions of lipids and water with a classification of biologically active lipids based on these interactions.
        Fed. Proc. 1970; 29: 1320-1326
      1. Kritchevsky D, Bonfield C, Anderson JW, editors. Dietary Fiber. New York: Plenum, 1990.

        • Brown L.
        • Rosner B.
        • Willett W.W.
        • Sacks F.M.
        Cholesterol-lowering effects of dietary fiber: a meta-analysis.
        Am. J. Clin. Nutr. 1999; 69: 30-42
        • Stedronsky E.R.
        Interaction of bile acids and cholesterol with non-systemic agents having hypocholesterolemic properties.
        Biochim. Biophys. Acta. 1994; 1210: 255-287
        • Kramer W.
        • Wess G.
        Bile acid transport systems as pharmaceutical targets.
        Eur. J. Clin. Invest. 1996; 26: 715-732
        • Börgstrom B.
        • Dahlquist A.
        • Lundh G.
        • Sjövall J.
        Studies of intestinal digestion and absorption in the human.
        J. Clin. Invest. 1957; 36: 1521-1529
        • Shiau Y.-F.
        Lipid digestion and absorption.
        in: Johnson L.R. Physiology of the Gastrointestinal Tract. 2nd ed. Raven Press, New York1987: 1527-1556
        • Borgström B.
        • Patton J.S.
        Luminal events in gastrointestinal lipid digestion.
        in: Schultz S.G. Handbook of Physiology. Section 6. The Gastrointestinal System. IV. American Physiological Society, Bethesda1991: 475-504
        • Thomson A.B.R.
        • Schoeller C.
        • Keelan M.
        • Smith L.
        • Clandinin M.T.
        Lipid absorption: passing through the unstirred layers, brush-border membrane, and beyond.
        Can. J. Physiol. Parmacol. 1993; 71: 531-555
        • Tso P.
        Intestinal lipid absorption.
        in: Johnson L.R. Physiology of the Gastrointestinal Tract. 3rd ed. Raven Press, New York1994: 1867-1907
        • van Greevenboek M.M.J.
        • de Bruin T.W.A.
        Chylomicron synthesis by intestinal cells in vitro and in vivo.
        Atherosclerosis. 1998; 141: S9-S16
        • Hussain M.M.
        A proposed model for the assembly of chylomicrons.
        Atherosclerosis. 2000; 148: 1-15
        • Meyer J.H.
        • Mayer E.A.
        • Jehn D.
        • Gu Y.
        • Fink A.S.
        • Fried M.
        Gastric processing and emptying of fat.
        Gastroenterology. 1986; 90: 1176-1187
        • Hamosh M.
        • Scow R.O.
        Lingual lipase and its role in the digestion of dietary lipid.
        J. Clin. Invest. 1973; 52: 88-95
        • Gargouri Y.
        • Moreau H.
        • Verger R.
        Gastric lipases: biochemical and biophysical studies. Review.
        Biochim. Biophys. Acta. 1989; 1006: 255-271
        • Carriere F.
        • Barrowman J.A.
        • Verger R.
        • Laugier R.
        Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans.
        Gastroenterology. 1993; 105: 876-888
        • Go V.L.M.
        • Poley J.R.
        • Hoffman A.F.
        • Summerskill W.H.J.
        Disturbances in fat digestion induced by acidic jejunal pH due to gastric hypersecretion in man.
        Gastroenterology. 1970; 58: 638-646
        • Malagelada J.R.
        • Go W.L.W.
        • Summerskill W.J.H.
        Altered pancreatic and biliary function after vagotomy and pyloroplasty.
        Gastroenterology. 1974; 66: 22-27
        • MacGregor I.L.
        • Parent J.
        • Meyer J.H.
        Gastric emptying of liquid meals and pancreatic and biliary secretion after subtotal gastrectomy or truncal vagotomy and pyloroplasty in man.
        Gastroenterology. 1977; 72: 195-205
        • Solomon T.E.
        Control of exocrine pancreatic secretion.
        in: Johnson L.R. Physiology of the Gastrointestinal Tract. 3rd ed. Raven Press, New York1994: 1499-1530
        • Blow D.
        Lipases reach the surface.
        Nature. 1991; 351: 444-445
        • Lowe M.E.
        Structure and function of pancreatic lipase and colipase.
        Annu. Rev. Nutr. 1997; 17: 141-158
        • Borgström B.
        On the interactions between pancreatic lipase and colipase and the substrate, and the importance of bile salts.
        J. Lipid. Res. 1975; 16: 411-417
        • Borgström B.
        The lipolytic enzymes of the gastrointestinal tract and fat digestion.
        in: Lankisch P.G. Pancreatic Enzymes in Health and Disease. Springer Verlag, Berlin1991: 19-26
        • Ghishan F.K.
        • Moran J.R.
        • Durie P.R.
        • Greene H.L.
        Isolated congenital lipase-colipase deficiency.
        Gastroenterology. 1984; 86: 1580-1582
        • Hildebrand H.
        • Borgström B.
        • Békássy A.
        • Erlanson-Albertsson C.
        • Helin I.
        Isolated co-lipase deficiency in two brothers.
        Gut. 1982; 23: 243-246
        • Hofmann A.F.
        • Borgström B.
        The intraluminal phase of fat digestion in man: the lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption.
        J. Clin. Invest. 1964; 43: 247-257
        • Carey M.C.
        • Small D.M.
        The characteristics of mixed micellar solutions with particular reference to bile.
        Am. J. Med. 1970; 49: 590-598
        • Small D.M.
        Liquid crystals in living and dying systems.
        J. Colloid Interface Sci. 1977; 58: 581-602
        • Rigler M.W.
        • Honkanen R.E.
        • Patton J.S.
        Visualization by freeze fracture, in vitro and in vivo, of the products of fat digestion.
        J. Lipid Res. 1986; 27: 836-857
        • Staggers J.E.
        • Hernell O.
        • Stafford R.J.
        • Carey M.C.
        Physical–chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of healthy adult human beings.
        Biochemistry. 1990; 29: 2028-2040
        • Hernell O.
        • Staggers J.E.
        • Carey M.C.
        Physical–chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 2. Phase analysis and aggregation states of luminal lipids during duodenal fat digestion in healthy adult human beings.
        Biochemistry. 1990; 29: 2041-2056
        • Porter H.P.
        • Saunders D.R.
        • Tytgat G.
        • Brunser O.
        • Rubin C.E.
        Fat absorption in bile fistula man.
        Gastroenterology. 1971; 60: 1008-1019
        • Mansbach C.M.
        • Cohen R.S.
        • Leff P.B.
        Isolation and properties of the mixed lipid micelles present in intestinal content during fat digestion in man.
        J. Clin. Invest. 1975; 56: 781-791
        • Badley B.W.D.
        • Murphy G.M.
        • Bouchier I.A.D.
        Intraluminal bile-salt deficiency in the pathogenesis of steatorrhoea.
        Lancet. 1969; ii: 400-402
        • Westergaard H.
        Duodenal bile acid concentrations in fat malabsorption syndromes.
        Scand. J. Gastroenterol. 1977; 12: 115-122
        • Ros E.
        • Garcı́a-Pugés A.
        • Reixach M.
        • Cusó E.
        • Rodés J.
        Fat digestion and exocrine pancreatic function in primary biliary cirrhosis.
        Gastroenterology. 1984; 87: 180-187
        • Hofmann A.F.
        Bile secretion and the enterohepatic circulation of bile acids.
        in: Feldman M. Scharschmidt B.F. Sleisenger M.H. Sleisenger & Fordtran’s Gastrointestinal and Liver Disease. 6th ed. WB Saunders, Philadelphia, PA1998: 937-948
        • Wilson F.A.
        • Sallee V.L.
        • Dietschy J.M.
        Unstirred water layer in the intestine: rate determinant for fatty acid absorption from micellar solutions.
        Science. 1971; 174: 1031-1033
        • Westergaard H.
        • Dietschy J.M.
        The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell.
        J. Clin. Invest. 1976; 58: 97-108
        • Shiau Y.-F.
        • Levine G.M.
        pH dependence of micellar diffusion and dissociation.
        Am. J. Physiol. 1980; 239: G177-G182
        • Schoeller C.
        • Keelan M.
        • Mulvey G.
        • Stremmel W.
        • Thomson A.B.R.
        Oleic acid uptake into rat and rabbit jejunal brush border membranes.
        Biochim. Biophys. Acta. 1995; 1236: 51-64
        • Stremmel W.
        Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein.
        J. Clin. Invest. 1988; 82: 2001-2010
        • Alpers D.H.
        • Strauss A.W.
        • Ockner R.K.
        • Bass N.M.
        • Gordon J.I.
        Cloning of a cDNA encoding rat intestinal fatty acid binding protein.
        Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 313-317
        • Greenberger N.J.
        • Rodgers J.B.
        • Isselbacher K.J.
        Absorption of medium and long chain triglycerides: factors influencing their hydrolysis and transport.
        J. Clin. Invest. 1966; 45: 217-227
        • Bach A.
        • Babayan V.K.
        Medium chain triglycerides: an update.
        Am. J. Clin. Nutr. 1982; 36: 950-962
        • Jeppesen P.B.
        • Mortensen P.B.
        The influence of a preserved colon on the absorption of medium chain fat in patients with small bowel resection.
        Gut. 1998; 43: 478-483
        • Lehner R.
        • Kuksis A.
        Triacylglycerol synthesis by purified triacylglycerol synthetase of rat intestinal mucosa.
        J. Biol. Chem. 1995; 270: 13630-13636
        • Mattson F.H.
        • Volpenhein R.A.
        The digestion and absorption of triglycerides.
        J. Biol. Chem. 1964; 239: 2772-2777
        • Johnston J.M.
        • Rao G.A.
        • Lowe P.A.
        The separation of the α-glycerophosphate and monoglyceride pathways in the intestinal biosynthesis of triglycerides.
        Biochim. Biophys. Acta. 1967; 137: 578-580
        • Mahley R.W.
        • Innerarity T.L.
        • Rall S.C.
        • Weisgraber K.H.
        Plasma lipoproteins: apolipoprotein structure and function.
        J. Lipid. Res. 1984; 25: 1277-1294
        • Tenkanen H.
        • Ehnholm C.
        Molecular biology of apolipoprotein A-IV.
        Curr. Opin. Lipidol. 1993; 4: 95-99
        • McCombs R.J.
        • Marcadis D.E.
        • Ellis J.
        • Weinberg R.B.
        Attenuated hypercholesterolemic response to a high-cholesterol diet in subjects heterozygous for the apolipoprotein A-IV-2 allele.
        N. Engl. J. Med. 1994; 331: 706-710
        • Jansen S.
        • Lopez-Miranda J.
        • Salas J.
        • Ordovas J.M.
        • Castro P.
        • Marin C.
        • et al.
        Effect of 347-serine mutation in apoprotein A-IV on plasma lipid response to dietary fat.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 1532-1538
        • Carmena-Ramon R.
        • Ascaso J.F.
        • Real J.T.
        • Ordovas J.M.
        • Carmena R.
        Genetic variation at the apoA-IV gene locus and response to diet in familial hypercholesterolemia.
        Arterioscler. Thromb. Vasc. Biol. 1998; 18: 1266-1274
        • Fugimoto K.
        • Gardella J.A.
        • Tso P.
        Increased apolipoprotein A-IV in mesenteric lymph after lipid meal acts as a physiological signal for satiation.
        Am. J. Physiol. 1993; 262: G1002-G1006
        • Quin X.
        • Swertfeger D.K.
        • Zheng S.
        • Hui D.Y.
        • Tso P.
        Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation.
        Am. J. Physiol. 1998; 274: 1836-1840
        • Mansbach C.M.
        • Nevin P.
        Intracellular movement of triacylglycerols in the intestine.
        J. Lipid. Res. 1998; 39: 963-968
        • Gordon D.A.
        Recent advances in elucidating the role of the microsomal triglyceride transfer protein in apolipoprotein B lipoprotein assembly.
        Curr. Opin. Lipidol. 1997; 8: 131-137
        • Wetterau J.R.
        • Aggerbeck L.P.
        • Bouma M.-E.
        • Eisenberg C.
        • Munck A.
        • Hernier M.
        • et al.
        Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia.
        Science. 1992; 258: 999-1001
        • Shiau Y.-F.
        • Popper D.A.
        • Reed M.
        • Umstetter C.
        • Capuzzi D.
        • Levine G.M.
        Intestinal triglycerides are derived from both endogenous and exogenous sources.
        Am. J. Physiol. 1985; 248: G164-G169
        • Mansbach C.M.
        • Dowell R.F.
        A re-examination of the fate of glyceride glycerol in neutral lipid absorption and transport.
        J. Lipid. Res. 1982; 23: 1009-1019
        • Dietschy J.M.
        • Turley S.D.
        • Spady D.K.
        Role of the liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans.
        J. Lipid. Res. 1993; 34: 1637-1659
        • Kesäniemi Y.A.
        • Miettinen T.A.
        Cholesterol absorption efficiency regulates plasma cholesterol levels in the Finnish population.
        Eur. J. Clin. Invest. 1987; 17: 391-395
        • Wilson M.D.
        • Rudel L.L.
        Review of cholesterol absorption with emphasis on dietary and biliary cholesterol.
        J. Lipid. Res. 1994; 35: 943-955
        • Connor W.E.
        • Lin D.S.
        The intestinal absorption of dietary cholesterol by hypercholesterolemic (type II) and normocholesterolemic humans.
        J. Clin. Invest. 1974; 53: 1062-1070
        • Mok H.Y.I.
        • von Bergmann K.
        • Grundy S.M.
        Effects of continuous and intermittent feeding on biliary lipid outputs in man: application for measurements of intestinal absorption of cholesterol and bile acids.
        J. Lipid. Res. 1979; 20: 389-398
        • Samuel P.
        • McNamara D.J.
        • Ahrens Jr, E.H.
        • Crouse J.R.
        • Parker T.
        Further validation of the plasma isotope ratio method for measurement of cholesterol absorption in man.
        J. Lipid. Res. 1982; 23: 480-489
        • McNamara D.J.
        Effect of fat-modified diets on cholesterol and lipoprotein metabolism.
        Annu. Rev. Nutr. 1987; 7: 273-290
        • Bosner S.M.
        • Lange L.G.
        • Stenson W.F.
        • Ostlund R.E.
        Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry.
        J. Lipid. Res. 1999; 40: 302-308
        • Seyahek E.
        • Nath C.
        • Heinemann T.
        • McGee M.
        • Seidman C.E.
        • Samuel P.
        • Breslow J.L.
        U-shape relationship between change in dietary cholesterol absorption and plasma lipoprotein responsiveness and evidence for extreme interindividual variation in dietary cholesterol absorption in humans.
        J. Lipid. Res. 1998; 39: 2415-2422
        • Ostlund R.E.
        • Bosner M.S.
        • Stenson W.F.
        Cholesterol absorption efficiency declines at moderate dietary doses in normal human subjects.
        J. Lipid. Res. 1999; 40: 1453-1458
        • Quintao E.
        • Grundy S.M.
        • Ahrens Jr, E.H.
        Effects of dietary cholesterol on the regulation of total body cholesterol in man.
        J. Lipid. Res. 1971; 12: 233-247
        • Miettinen T.A.
        • Kesaniemi Y.A.
        Cholesterol absorption: regulation of cholesterol synthesis and elimination, and within-population variations of serum cholesterol levels.
        Am. J. Clin. Nutr. 1989; 49: 629-635
        • Macdonald I.A.
        • Bokkenheuser V.D.
        • Winter J.
        • McLernon A.M.
        • Mosbach E.H.
        Degradation of steroids in the human gut.
        J. Lipid. Res. 1983; 24: 675-700
        • Thomson A.B.R.
        Influence of site and unstirred layers on the unidirectional flux of cholesterol and fatty acids into rabbit intestine.
        J. Lipid. Res. 1980; 21: 1097-1107
        • Thomson A.B.R.
        • O’Brien B.D.
        Uptake of cholesterol into rabbit jejunum using three in vitro techniques: importance of bile acid micelles and unstirred layer resistance.
        Am. J. Physiol. 1981; 241: G270-G274
        • Samuel P.
        • McNamara D.J.
        Differential absorption of exogenous and endogenous cholesterol in man.
        J. Lipid. Res. 1983; 24: 265-276
        • Thurnhofer H.
        • Hauser H.
        Uptake of cholesterol by small intestinal brush border membrane is protein-mediated.
        Biochemistry. 1990; 29: 2142-2148
        • Thurnhofer H.
        • Schnabel J.
        • Betz M.
        • Lipka G.
        • Pidgeon C.
        • Hauser H.
        Cholesterol-transfer protein located in the intestinal brush border membrane. Partial purification and characterization.
        Biochim. Biophys. Acta. 1991; 1064: 275-286
        • Hauser H.
        • Dyer J.H.
        • Nandy A.
        • Vega M.A.
        • Werder B.
        • Bieliauskite E.
        • et al.
        Identification of a receptor mediating absorption of dietary cholesterol in the intestine.
        Biochemistry. 1998; 37: 17843-17850
        • Norum K.A.
        • Lolljeqvist A.
        • Helgerud P.
        • Normann E.R.
        • Selbekk A.M.
        • Selbekk B.
        Esterification of cholesterol in human small intestine: the importance of acyl-CoA:cholesterol acyltransferase.
        Eur. J. Clin. Invest. 1979; 9: 55-62
        • Ikonen E.
        Molecular mechanisms of intracellular cholesterol transport.
        Curr. Opin. Lipidol. 1997; 8: 60-64
        • Field F.J.
        • Kam N.T.P.
        • Mathur S.N.
        Regulation of cholesterol metabolism in the intestine.
        Gastroenterology. 1990; 99: 539-551
        • Gould R.G.
        Symposium on sitosterols. IV. Absorbability of β-sitosterol.
        Trans. N.Y. Acad. Sci. 1955; 18: 129-134
        • Grundy S.M.
        • Ahrens E.H.
        • Salen G.
        Dietary β-sitosterol as an internal standard to correct for cholesterol losses in sterol balance studies.
        J. Lipid. Res. 1968; 9: 374-387
        • Salen G.
        • Ahrens Jr, E.H.
        • Grundy S.M.
        Metabolism of β-sitosterol in man.
        J. Clin. Invest. 1970; 49: 952-967
        • Bean G.A.
        Phytosterols.
        Adv. Lipid. Res. 1973; 11: 193-218
        • Vahouny G.V.
        • Connor W.E.
        • Roy T.
        • Lin D.S.
        • Gallo L.L.
        Lymphatic absorption of shellfish sterols and their effects on cholesterol absorption.
        Am. J. Clin. Nutr. 1981; 34: 507-513
        • Connor W.E.
        • Lin D.S.
        Absorption and transport of shellfish sterols in human subjects.
        Gastroenterology. 1981; 81: 276-284
        • Bhattacharyya A.K.
        • Connor W.E.
        β-Sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters.
        J. Clin. Invest. 1974; 53: 1033-1043
        • Tilvis R.S.
        • Miettinen T.A.
        Serum plant sterols and their relation to cholesterol absorption.
        Am. J. Clin. Nutr. 1986; 43: 92-97
        • Miettinen T.A.
        • Tilvis R.S.
        • Kesaniemi Y.A.
        Serum plant sterol and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population.
        Am. J. Epidemiol. 1990; 131: 20-31
        • Field F.J.
        • Mathur S.
        β-Sitosterol: esterification by intestinal acyl coenzyme A:acyl transferase (ACAT) and its effect on cholesterol esterification.
        J. Lipid. Res. 1983; 24: 409-417
        • Armstrong M.J.
        • Carey M.C.
        Thermodymanic and molecular determinants of sterol solubilities in bile acid micelles.
        J. Lipid. Res. 1987; 28: 1144-1155
        • Nestel P.J.
        • Poyser A.
        Changes in cholesterol synthesis and excretion when cholesterol intake is increased.
        Metabolism. 1976; 25: 1591-1599
        • Lin D.S.
        • Connor W.E.
        The long term effects of dietary cholesterol upon the plasma lipids, lipoproteins, cholesterol absorption, and the sterol balance in man: the demonstration of feedback inhibition of cholesterol biosynthesis and increased bile acid excretion.
        J. Lipid. Res. 1980; 21: 1042-1052
        • Mistry P.
        • Miller N.E.
        • Laker M.
        • Hazzard W.R.
        • Lewis B.
        Individual variation in the effects of dietary cholesterol on plasma lipoproteins and cellular cholesterol homeostasis.
        J. Clin. Invest. 1981; 67: 493-502
        • Maranhao R.C.
        • Quintao E.C.R.
        Long term steroid metabolism balance studies in subjects on cholesterol-free and cholesterol-rich diets: comparison between normal and hypercholesterolemic individuals.
        J. Lipid. Res. 1983; 24: 167-173
        • McNamara D.J.
        • Kolb R.
        • Parker T.S.
        • Batwin H.
        • Samuel P.
        • Brown C.D.
        • Ahrens Jr, E.H.
        Heterogeneity of cholesterol homeostasis in man: response to changes in dietary fat quality and cholesterol quantity.
        J. Clin. Invest. 1987; 79: 1729-1739
        • Jones P.J.H.
        • Pappu A.S.
        • Hatcher L.
        • Li Z.-C.
        • Illingworth D.R.
        • Connor W.E.
        Dietary cholesterol feeding suppresses human cholesterol synthesis measured by deuterium incorporation and urinary mevalonic acid levels.
        Arterioscler. Thromb. Vasc. Biol. 1996; 16: 1222-1228
        • Hopkins P.
        Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review.
        Am. J. Clin. Nutr. 1992; 55: 1060-1070
        • Hegsted D.M.
        Serum-cholesterol response to dietary cholesterol: a re-evaluation.
        Am. J. Clin. Nutr. 1986; 44: 299-305
        • Kern F.
        Normal plasma cholesterol in an 88-year-old man who eats 25 eggs a day.
        N. Engl. J. Med. 1991; 324: 896-899
        • Katan M.B.
        • Beynen A.C.
        • de Vries J.H.M.
        • Nobels A.
        Existence of consistent hypo- and hyperresponders to dietary cholesterol in man.
        Am. J. Epidemiol. 1986; 123: 221-234
        • Beynen A.C.
        • Katan M.B.
        Reproducibility of the variations between humans in the response of serum cholesterol to the cessation of egg consumption.
        Atherosclerosis. 1985; 57: 19-31
        • Katan M.B.
        • Beynen A.C.
        Hyper-response to dietary cholesterol in man.
        Lancet. 1983; i ([letter]): 1213
        • Messinger W.J.
        • Porosowska Y.
        • Steele J.M.
        Effect of feeding egg yolk and cholesterol on serum cholesterol levels.
        Arch. Intern. Med. 1950; 86: 189-195
        • Miettinen T.A.
        • Gylling H.
        • Vanhanen H.
        • Ollus A.
        Cholesterol absorption, elimination, and synthesis related to LDL kinetics during varying fat intake in men with different apoprotein E phenotypes.
        Arterioscler. Thromb. 1992; 12: 1044-1052
        • Kempen H.J.M.
        • de Knijff P.
        • Boomsma D.I.
        • van der Voort H.A.
        • Leuven J.A.G.
        • Havekes L.
        Plasma levels of lathosterol and phytosterols in relation to age, sex, anthropometric parameters, plasma lipids, and apolipoprotein E phenotype, in 160 Dutch families.
        Metabolism. 1991; 40: 604-611
        • McMurry M.P.
        • Connor W.E.
        • Lin D.S.
        • Cerqueira M.T.
        • Connor S.L.
        The absorption of cholesterol and the sterol balance in the Tarahumara Indians of Mexico fed cholesterol-free and high cholesterol diets.
        Am. J. Clin. Nutr. 1985; 41: 1289-1298
        • Mahley R.W.
        Apolipoprotein E: cholesterol transport protein with expanding role in cell biology.
        Science. 1988; 240: 622-630
        • Kesäniemi Y.A.
        • Ehnholm C.
        • Miettinen T.A.
        Intestinal cholesterol absorption efficiency in man is related to apoprotein E phenotype.
        J. Clin. Invest. 1987; 80: 578-581
        • Ordovas J.M.
        • Lopez-Miranda J.
        • Mata P.
        • Perez-Jimenez F.
        • Lichtenstein A.H.
        • Schaefer E.J.
        Gene–diet interactions in determining plasma lipid response to dietary intervention.
        Atherosclerosis. 1995; 118: S11-S27
        • Ordovas J.M.
        • Schaefer E.J.
        Genes, variation of cholesterol and fat intake and serum lipids.
        Curr. Opin. Lipidol. 1999; 10: 15-22
        • Lefevre M.
        • Ginsberg H.N.
        • Kris-Etherton P.M.
        • Elmer P.J.
        • Stewart P.W.
        • Ershow A.
        • Pearson T.A.
        • et al.
        ApoE genotype does not predict lipid response to changes in dietary saturated fatty acids in a heterogeneous normolipidemic population.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 2914-2923
        • Davignon J.
        • Gregg R.E.
        • Sing C.F.
        Apolipoprotein E polymorphism and atherosclerosis.
        Arteriosclerosis. 1988; 8: 1-21
        • Juvonen T.
        • Kervinen K.
        • Kairaluoma M.I.
        • Lajunen L.H.
        • Kesäniemi Y.A.
        Gallstone cholesterol content is related to apolipoprotein E polymorphism.
        Gastroenterology. 1994; 104: 1806-1813
        • Bertomeu A.
        • Ros E.
        • Zambón D.
        • Vela M.
        • Pérez-Ayuso R.M.
        • Targarona E.
        • et al.
        Apolipoprotein E polymorphism and gallstones.
        Gastroenterology. 1996; 111: 1603-1610
        • Portincasa P.
        • Van Erpecum K.J.
        • van de Meeberg G.P.
        • Dallinga-Thie G.M.
        • De Bruin T.W.A.
        • van Berge Henegouwen G.P.
        Apolipoprotein E4 genotype and gallbladder motility influence speed of gallstone clearance and risk of recurrence after extracorporeal shock-wave lithotripsy.
        Hepatology. 1996; 24: 580-587
        • Miettinen T.A.
        • Vanhanen H.
        Dietary sitostanol related to absorption, synthesis and serum level of cholesterol in different apolipoprotein E phenotypes.
        Atherosclerosis. 1994; 105: 217-226
        • Glueck C.J.
        • Speirs J.
        • Tracy T.
        • Streicher P.
        • Illig E.
        • Vandergrift J.
        Relationship of plant sterols (phytosterols) and cholesterol in 595 hypercholesterolemic subjects, and familial aggregation of phytosterols, cholesterol, and premature coronary heart disease in hypercholesterolemic probands and their first-degree relatives.
        Metabolism. 1991; 40: 842-848
        • Patel S.B.
        • Salen G.
        • Hidaka H.
        • Kwiterovich P.O.
        • Stalenhoef A.F.
        • Miettinen T.A.
        • et al.
        Mapping a gene involved in regulating dietary cholesterol absorption. The sitosterolemia locus is found at chromosome 2p21.
        J. Clin. Invest. 1998; 102: 1041-1044
        • Dawson P.A.
        • Rudel L.L.
        Intestinal cholesterol absorption.
        Curr. Opin. Lipidol. 1999; 10: 315-320
        • Rigotti A.
        • Trigatti B.
        • Babitt J.
        • Penman M.
        • Xu S.
        • Krieger M.
        Scavenger receptor BI: a cell surface receptor for high density lipoprotein.
        Curr. Opin. Lipidol. 1997; 8: 181-188
        • Acton S.
        • Osgood D.
        • Donoghue M.
        • Corella D.
        • Pocovi M.
        • Cenarro A.
        • et al.
        Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population.
        Arterioscler. Thromb. Vasc. Biol. 1999; 19: 1734-1743
        • Aleman-Gomez J.A.
        • Colwell N.S.
        • Vyas K.
        • Borecki I.
        • Schonfeld G.
        • Lange L.G.
        • Kumar V.B.
        Relationship of human pancreatic cholesterol esterase gene structure with lipid phenotypes.
        Life. Sci. 1999; 64: 2419-2427
        • Herrmann S.M.
        • Poirier O.
        • Nicaud V.
        • Evans A.
        • Ruidavets J.B.
        • Luc G.
        • et al.
        Identification of two polymorphisms in the promoter of the microsomal triglyceride transfer protein (MTP) gene: lack of association with lipoprotein profiles.
        J. Lipid. Res. 1998; 39: 2432-2435
        • Meiner V.L.
        • Cases S.
        • Myers H.M.
        • Sande E.R.
        • Bellosta S.
        • Schambelan M.
        • et al.
        Disruption of the acyl-CoA:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals.
        Proc. Natl. Acad. Sci. U.S.A. 1996; 92: 14041-14046
        • Cases S.
        • Novak S.
        • Zheng Y.W.
        • Myers H.M.
        • Lear S.R.
        • Sande E.
        • et al.
        ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization.
        J. Biol. Chem. 1998; 273: 26755-26764
        • Oelkers P.
        • Behari A.
        • Cromley D.
        • Billheimer J.T.
        • Sturley S.L.
        Characterization of two human genes encoding acyl coenzyme A:cholesterol acyl transferase-related enzymes.
        J. Biol. Chem. 1998; 273: 26765-26771
        • Li B.L.
        • Li X.L.
        • Duan Z.J.
        • Lee O.
        • Lin S.
        • Ma Z.M.
        • et al.
        Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes.
        J. Biol. Chem. 1999; 274: 11060-11071
        • Schonfeld G.
        The hypobetalipoproteinemias.
        Annu. Rev. Nutr. 1995; 15: 23-34
        • Linton M.F.
        • Farese R.V.
        • Young S.G.
        Familial hypobetalipoproteinemia.
        J. Lipid. Res. 1993; 34: 521-541
        • Peacock R.E.
        • Karpe F.
        • Talmud P.J.
        • Hamsten A.
        • Humphries S.E.
        Common variation in the gene for apolipoprotein B modulates postprandial lipoprotein metabolism: a hypothesis generating study.
        Atherosclerosis. 1995; 116: 135-145
        • Lopez-Miranda J.
        • Ordovas J.M.
        • Ostos M.A.
        • Marin C.
        • Jansen S.
        • Salas J.
        • et al.
        Dietary fat clearance in normal subjects is modulated by genetic variation at the apolipoprotein B gene locus.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 1765-1773
        • Gylling H.
        • Strandberg T.
        • Tilvis R.
        • Miettinen T.A.
        Regulation of serum cholesterol level in middle-aged and elderly men. Relation of cholesterol absorption and synthesis to lipoprotein metabolism.
        Arterioscler. Thromb. 1994; 14: 694-700
        • Koivisto P.
        • Miettinen T.A.
        Adaptation of cholesterol and bile acid metabolism and vitamin B12 absorption in the long-term follow-up after partial ileal bypass.
        Gastroenterology. 1986; 90: 984-990
        • Ponz de Leon M.
        • Iori R.
        • Barbolini G.
        • Pompei G.
        • Zaniol P.
        • Carulli N.
        Influence of small-bowel transit time on dietary cholesterol absorption in human beings.
        N. Engl. J. Med. 1982; 307: 102-103
        • Holgate A.M.
        • Read N.W.
        Relationship between small bowel transit time and absorption of a solid meal. Influence of metoclopramide, magnesium sulfate, and lactulose.
        Dig. Dis. Sci. 1983; 28: 812-819
        • Marcus S.N.
        • Heaton K.W.
        Intestinal transit, deoxycholic acid and the cholesterol saturation of bile-three inter-related factors.
        Gut. 1986; 27: 550-558
        • Montet J.C.
        • Reynier M.O.
        • Montet A.M.
        • Gerolami A.
        Distinct effects of three bile salts on cholesterol solubilization by oleate–monoolein–bile salt micelles.
        Biochim. Biophys. Acta. 1979; 575: 289-294
        • Carey M.C.
        • Montet J.C.
        • Phillips M.C.
        • Armstrong M.J.
        • Mazer N.A.
        Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates.
        Biochemistry. 1981; 20: 3637-3648
        • Watt S.M.
        • Simmonds W.J.
        Effect of four taurine-conjugated bile acids on mucosal uptake and lymphatic absorption of cholesterol in the rat.
        J. Lipid. Res. 1984; 25: 448-455
        • Hofmann A.F.
        • Roda A.
        Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem.
        J. Lipid. Res. 1984; 25: 1477-1489
        • Miettinen T.A.
        Cholesterol production in obesity.
        Circulation. 1971; 44: 842-850
        • Nestel P.J.
        • Schreibman P.H.
        • Ahrens Jr, E.H.
        Cholesterol metabolism in human obesity.
        J. Clin. Invest. 1973; 52: 2389-2397
        • Bennion L.J.
        • Grundy S.M.
        Effects of obesity and caloric intake on biliary lipid metabolism in obesity.
        J. Clin. Invest. 1975; 56: 996-1011
        • Mabee T.M.
        • Meyer P.
        • DenBesten L.
        • Mason E.E.
        The mechanism of increased gallstone formation in obese human subjects.
        Surgery. 1976; 79: 460-468
        • Shaffer E.A.
        • Small D.M.
        Biliary lipid secretion in cholesterol gallstone disease. The effect of cholecystectomy and obesity.
        J. Clin. Invest. 1977; 59: 828-840
        • Kern Jr, F.
        Effects of dietary cholesterol on cholesterol and bile acid homeostasis in patients with cholesterol gallstones.
        J. Clin. Invest. 1994; 93: 1186-1194
        • Sehayek E.
        • Ono J.G.
        • Shefer S.
        • Nguyen L.B.
        • Wang N.
        • Batta A.K.
        • et al.
        Biliary cholesterol excretion: a novel mechanism that regulates dietary cholesterol absorption.
        Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 10194-10199
        • Ji Y.
        • Wang N.
        • Ramakrishnan R.
        • Sehayek E.
        • Huszar D.
        • Breslow J.L.
        • Tall A.R.
        Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile.
        J. Biol. Chem. 1999; 274: 33398-33402
        • Simmonds W.J.
        • Hofmann A.F.
        • Theodor E.
        Absorption of cholesterol from a micellar solution: intestinal perfusion studies in man.
        J. Clin. Invest. 1967; 45: 874-890
        • Brussaard J.H.
        • Katan M.B.
        • Hautvast J.G.A.J.
        Faecal excretion of bile acids and neutral steroids on diets differing in type and amount of dietary fat in young healthy persons.
        Eur. J. Clin. Invest. 1983; 13: 115-122
        • Gallaher D.
        • Schneeman B.O.
        Intestinal interaction of bile acids, phospholipids, dietary fibers, and cholestyramine.
        Am. J. Physiol. 1986; 250: G420-G426
        • Vahouny G.V.
        • Tombes R.
        • Cassidy M.M.
        • Kritchevsky D.
        • Gallo L.L.
        Dietary fibers. V. Binding of bile salts, phospholipids and cholesterol from mixed micelles by bile acid sequestrants and dietary fibers.
        Lipids. 1980; 15: 1012-1018
        • Johnson I.T.
        • Gee J.M.
        Effect of gel-forming gums on the unstirred layer and sugar transport in vitro.
        Gut. 1981; 22: 398-403
        • Flourie B.
        • Vidon N.
        • Florent C.H.
        • Bernier J.J.
        Effect of pectin on jejunal glucose absorption and unstirred layer thickness in normal man.
        Gut. 1984; 25: 936-941
        • Kesaniemi Y.A.
        • Tarpila S.
        • Miettinen T.A.
        Low vs high dietary fiber and serum, biliary, and fecal lipids in middle-aged men.
        Am. J. Clin. Nutr. 1990; 51: 1007-1012
        • Jones P.J.H.
        • MacDougall D.E.
        • Ntanios F.
        • Vanstone C.A.
        Dietary phytosterols as cholesterol-lowering agents in humans.
        Can. J. Physiol. Pharmacol. 1997; 75: 217-227
        • Ikeda I.
        • Sugano M.
        Inhibition of cholesterol absorption by plant sterols for mass intervention.
        Curr. Opin. Lipidol. 1998; 9: 527-531
        • Miettinen T.A.
        • Gylling H.
        Regulation of cholesterol metabolism by dietary plant sterols.
        Curr. Opin. Lipidol. 1999; 10: 9-14
        • Ikeda I.
        • Sugano M.
        Some aspects of mechanism of inhibition of cholesterol absorption by β-sitosterol.
        Biochim. Biophys. Acta. 1983; 732: 651-658
        • Lees A.M.
        • Mok H.Y.
        • Lees R.S.
        • McCluskey M.A.
        • Grundy S.M.
        Plant sterols as cholesterol-lowering agents: clinical trials in patients with hypercholesterolemia and studies of sterol balance.
        Atherosclerosis. 1977; 28: 325-338
        • Heinemann T.
        • Kullak-Ublick G.-A.
        • Pietruck B.
        • von Bergmann K.
        Mechanisms of action of plant sterols on inhibition of cholesterol absorption: comparison of sitosterol and sitostanol.
        Eur. J. Clin. Pharmacol. 1991; 40: S59-S63
        • Heinemann T.
        • Leiss O.
        • von Bergmann K.
        Effect of low-dose sitostanol on serum cholesterol in patients with hypercholesterolemia.
        Atherosclerosis. 1986; 61: 219-223
        • Gylling H.
        • Miettinen T.A.
        Serum cholesterol and cholesterol and lipoprotein metabolism in hypercholesterolaemic NIDDM patients before and during sitostanol ester-margarine treatment.
        Diabetologia. 1994; 37: 773-780
        • Miettinen T.A.
        • Puska P.
        • Gylling H.
        • Vanhanen H.
        • Vartiainen E.
        Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population.
        N. Engl. J. Med. 1995; 333: 1308-1312
        • Gylling H.
        • Radhakrishnan R.
        • Miettinen T.A.
        Reduction of serum cholesterol in postmenopausal women with previous myocardial infarction and cholesterol malabsorption induced by dietary sitostanol ester margarine.
        Circulation. 1997; 96: 4226-4231
        • Weststrate J.A.
        • Meijer G.W.
        Plant sterol-enriched margarines and reduction of plasma total and LDL-cholesterol concentration in normocholesterolaemic and mildly hypercholesterolaemic subjects.
        Eur. J. Clin. Nutr. 1998; 52: 334-343
        • Hallikainen M.A.
        • Uusitupa M.I.J.
        Effect of 2 low-fat stanol ester-containing margarines on serum cholesterol concentrations as part of a low-fat diet in hypercholesterolemic subjects.
        Am. J. Clin. Nutr. 1999; 69: 403-410
        • Jones P.J.H.
        • Ntanios F.Y.
        • Raeini-Sarjaz M.
        • Vanstone C.A.
        Cholesterol-lowering efficacy of a sitostanol-containing phytosterol mixture with a prudent diet in hyperlipidemic men.
        Am. J. Clin. Nutr. 1999; 69: 1144-1150
        • Becker M.
        • Staab D.
        • von Bergmann K.
        Treatment of severe familial hypercholesterolemia in childhood with sitosterol and sitostanol.
        J. Pediatr. 1993; 122: 292-296
        • Gylling H.
        • Miettinen T.A.
        Sitostanol ester margarine in dietary hypolipidemic treatment of children with familial hypercholesterolemia.
        J. Lipid. Res. 1995; 36: 1807-1812
        • Vuorio A.F.
        • Gylling H.
        • Turtola H.
        • Kontula K.
        • Miettinen T.A.
        Sitostanol ester margarine without and with simvastatin in dietary treatment of families heterozygous of familial hypercholesterolemia North Karelia deletion.
        Circulation. 1998; 98: 1533-1534
      2. Bellisle F, Diplok AT, Hornstra G, Koletzko B, Roberfroid M, Salminen S, Saris WHM, editors. Functional food science in Europe. Br J Nutr 1998;80(Suppl. 1):S1–S193.

        • Howard B.V.
        • Kritchevsky D.
        Phytochemicals and cardiovascular disease. A statement for healthcare professionals from the American Heart Association.
        Circulation. 1997; 95: 2591-2593
        • Beil F.U.
        • Grundy S.M.
        Studies on plasma lipoproteins during absorption of exogenous lecithin in man.
        J. Lipid. Res. 1980; 21: 525-536
        • Knuiman J.T.
        • Beynen A.C.
        • Katan M.B.
        Lecithin intake and serum cholesterol.
        Am. J. Clin. Nutr. 1989; 49: 266-268
        • Mattson F.H.
        • Nolen G.A.
        Absorbability by rats of compounds containing one to eight ester groups.
        J. Nutr. 1972; 102: 1171-1176
        • Crouse J.R.
        • Grundy S.M.
        Effects of sucrose polyester on cholesterol metabolism in man.
        Metabolism. 1979; 28: 994-1000
        • Jandacek R.J.
        • Ramirez M.M.
        • Crouse J.R.
        Effects of partial replacement of dietary fat by olestra on dietary cholesterol absorption in man.
        Metabolism. 1990; 39: 848-852
        • McNamara D.J.
        • Davidson N.O.
        • Samuel P.
        • Ahrens E.H.
        Cholesterol absorption in man: effect of administration of clofibrate and/or cholestyramine.
        J. Lipid. Res. 1980; 21: 1058-1064
        • Grundy S.M.
        • Ahrens Jr, E.H.
        • Salen G.
        • Schreibman P.H.
        • Nestel P.J.
        Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia.
        J. Lipid. Res. 1972; 13: 531-551
        • Angelin B.
        • Einarsson K.
        • Leijd B.
        Biliary lipid composition during treatment with different hypolipidemic drugs.
        Eur. J. Clin. Invest. 1979; 9: 185-190
        • Miettinen T.A.
        Inhibition of cholesterol absorption by HMG-CoA reductase inhibitor.
        Eur. J. Clin. Pharmacol. 1991; 40: S19-S21
        • Rubin R.A.
        • Kowalski T.E.
        • Khandewal M.
        • Malet P.F.
        Ursodiol for hepatobiliary disorders.
        Ann. Intern. Med. 1994; 121: 207-218
        • Armstrong M.J.
        • Carey M.C.
        The hydrophobic–hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities.
        J. Lipid. Res. 1982; 23: 70-80
        • Fromm H.
        Gallstone dissolution and the cholesterol-bile acid-lipoprotein axis. Propitious effects of ursodeoxycholic acid.
        Gastroenterology. 1984; 87: 229-233
        • Angelin B.
        • Ewerth S.
        • Einarsson K.
        Ursodeoxycholic acid treatment in cholesterol gallstone disease: effects on hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, biliary lipid composition, and plasma lipid levels.
        J. Lipid. Res. 1983; 24: 461-468
        • Eusufuzai S.
        • Ericsson S.
        • Cederlund T.
        • Einarsson K.
        • Angelin B.
        Effect of ursodeoxycholic acid treatment on ileal absorption of bile acids in man as determined by the SeHCAT test.
        Gut. 1991; 32: 1044-1048
        • Sedaghat A.
        • Samuel P.
        • Crouse J.R.
        • Ahrens E.H.
        Efects of neomycin on absorption, synthesis, and/or flux of cholesterol in man.
        J. Clin. Invest. 1975; 55: 12-21
        • Samuel P.
        Treatment of hypercholesterolemia with neomycin — a time for reappraisal.
        N. Engl. J. Med. 1979; 301: 595-597
        • Sliskovic D.R.
        • Trivedi B.K.
        ACAT inhibitors: potential antiatherosclerotic agents.
        Curr. Med. Chem. 1994; 1: 204-225
        • Harris W.S.
        • Dujovne C.A.
        • von Bergmann K.
        • Neal J.
        • Akester J.
        • Windsor S.L.
        • et al.
        Effects of the ACAT inhibitor CL 227,082 on cholesterol metabolism in humans.
        Clin. Pharmacol. Ther. 1990; 48: 189-194
        • Hainer J.W.
        • Terry J.G.
        • Connell J.M.
        • Zyruk H.
        • Jenkins R.M.
        • Shand D.L.
        • et al.
        Effect of the acyl -CoA:cholesterol acyltransferase inhibitor DuP 128 on cholesterol absorption and serum cholesterol in humans.
        Clin. Pharmacol. Ther. 1994; 56: 65-74
        • Sturley S.
        Molecular aspects of intracellular cholesterol esterification: the acyl coenzyme A:cholesterol acyl transferase reaction.
        Curr. Opin. Lipidol. 1997; 8: 167-173
        • Jamil H.
        • Gordon D.A.
        • Eustice D.
        • Brooks C.M.
        • Dickson J.K.
        • Chen Y.
        • et al.
        An inhibitor of the microsomal triglyceride transfer protein inhibits apoB secretion from HepG2 cells.
        Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 11991-11995
        • van Greevenbroek M.M.
        • Robertus-Teunissen M.G.
        • Erkelens D.W.
        • de Bruin T.W.
        Participation of the microsomal triglyceride transfer protein in lipoprotein assembly in Caco-2 cells: interaction with saturated and unsaturated fatty acids.
        J. Lipid. Res. 1998; 39: 173-185
        • Wetterau J.R.
        • Gregg R.E.
        • Harrity T.W.
        • Arbeeny C.
        • Cap M.
        • Connolly F.
        • et al.
        An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits.
        Science. 1998; 282: 751-754
        • Raabe M.
        • Flynn L.M.
        • Zlot C.H.
        • Wong J.S.
        • Veniant M.M.
        • Hamilton R.L.
        • Young S.G.
        Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes.
        Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 8686-8691
        • Krause B.R.
        • Sliskovic D.R.
        • Anderson M.
        • Homan R.
        Lipid lowering effects of WAY-121,898, an inhibitor of pancreatic cholesteryl ester hydrolase.
        Lipids. 1998; 33: 489-498
        • Oakenfull D.G.
        • Sidhu G.S.
        Could saponins be a useful treatment for hypercholesterolaemia?.
        Eur. J. Clin. Nutr. 1990; 44: 79-88
        • Morehouse L.A.
        • Bangerter F.-W.
        • DeNinno M.P.
        • Inskeep P.B.
        • McCarthy P.A.
        • Pettini J.L.
        • et al.
        Comparison of synthetic saponin cholesterol absorption inhibitors in rabbits: evidence for a non-stoichiometric mechanism of action.
        J. Lipid. Res. 1999; 40: 464-474
        • Harris W.S.
        • Dujovne C.A.
        • Windsor S.L.
        • Gerrond L.L.
        • Newton F.A.
        • Gelfand R.A.
        Inhibiting cholesterol absorption with CP-88,818 (beta-tigogenin cellobioside; tiqueside): studies in normal and hyperlipidemic subjects.
        J. Cardiovasc. Pharmacol. 1997; 30: 55-60
        • Burnett D.A.
        • Caplen M.A.
        • Davis Jr, H.R.
        • Burrier R.E.
        • Clader J.W.
        2-Azetidinones as inhibitors of cholesterol absorption.
        J. Med. Chem. 1994; 37: 1733-1736
        • Salisbury B.G.
        • Davis Jr, H.R.
        • Burrier R.E.
        • Burnett D.A.
        • Boykow G.
        • Caplen M.A.
        • et al.
        Hypocholesterolemic activity of a novel inhibitor of cholesterol absorption, SCH 48461.
        Atherosclerosis. 1995; 115: 45-63
        • Pi-Sunyer F.X.
        Medical hazards of obesity.
        Ann. Intern. Med. 1993; 119: 665-670
        • Golay A.
        • Bobbioni E.
        The role of dietary fat in obesity.
        Int. J. Obes. 1997; 21: S2-S11
        • Warshaw H.
        • Franz M.
        • Powers M.A.
        • Wheeler M.
        Fat replacers: their use in foods and role in diabetes medical nutrition therapy.
        Diabetes Care. 1996; 19: 1294-1301
        • Small D.M.
        The effects of glyceride structure on absoption and metabolism.
        Annu. Rev. Nutr. 1991; 11: 413-434
        • Bell S.J.
        • Bradley D.
        • Forse R.A.
        • Bistrian B.R.
        The new dietary fats in health and disease.
        J. Am. Diet Assoc. 1997; 97: 280-286
        • Muzzarelli R.A.A.
        Chitosan-based dietary foods.
        Carbohydr. Polymers. 1996; 29: 309-316
        • Thomson A.B.R.
        • De Pover A.
        • Keelan M.
        • Jarocka-Cyrta E.
        • Clandinin M.T.
        Inhibition of lipid absorption as an approach to the treatment of obesity.
        Methods Enzymol. 1997; 286: 3-44
        • Hadvary P.
        • Lengsfeld H.
        • Wolfer H.
        Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin.
        Biochem. J. 1988; 256: 357-361
        • Atkinson R.L.
        Use of drugs in the treatment of obesity.
        Annu. Rev. Nutr. 1997; 17: 383-403
        • Mattson F.H.
        • Volpenhein R.A.
        Hydrolysis of fully esterified alcohols containing from one to eight hydroxyl groups by the lipolytic enzymes of rat pancreatic juice.
        J. Lipid. Res. 1972; 13: 325-328
        • Maas M.I.
        • Hopman W.P.
        • van der Wijk T.
        • Katan M.B.
        • Jansen J.B.
        Sucrose polyester does not inhibit gastric acid secretion or stimulate cholecystokinin release in man.
        Am. J. Clin. Nutr. 1997; 65: 761-765
        • Maas M.I.
        • Hopman W.P.
        • Katan M.B.
        • Jansen J.B.
        The nondigestible fat sucrose polyester does not stimulate gallbladder emptying in humans.
        Am. J. Clin. Nutr. 1998; 68: 1272-1275
        • Lawson K.D.
        • Middleton S.J.
        • Hasall C.D.
        Olestra: a nonabsorbed, noncaloric replacement for dietary fat: a review.
        Drug. Metab. Rev. 1997; 29: 651-703
        • Glueck C.J.
        • Hastings M.M.
        • Allen R.D.
        • Hogg E.
        • Baehler L.
        • Gartside P.S.
        • et al.
        Sucrose polyester and covert caloric dilution.
        Am. J. Clin. Nutr. 1982; 35: 1352-1359
        • de Graaf C.
        • Hulshof T.
        • Weststrate J.A.
        • Hautvast J.G.
        Nonabsorbable fat (sucrose polyester) and the regulation of energy intake and body weight.
        Am. J. Physiol. 1996; 39: R1386-R1393
        • Miller D.L.
        • Castellanos V.H.
        • Shide D.J.
        • Peters J.C.
        • Rolls B.J.
        Effect of fat-free potato chips with and without nutrition labels on fat and energy intakes.
        Am. J. Clin. Nutr. 1998; 68: 282-290
        • Webb D.R.
        • Harrison G.G.
        • Lee M.J.
        • Huang M.H.
        Estimated consumption and eating frequency of olestra from savory snacks using menu census data.
        J. Nutr. 1997; 127: 1547S-1554S
        • Ko J.
        • Small D.M.
        Behavior of tetrahydrolipstatin in biological model membranes and emulsions.
        J. Lipid. Res. 1997; 38: 1544-1552
        • Guerciolini R.
        Mode of action of orlistat.
        Int. J. Obes. 1997; 21: S12-S23
        • Zhi J.
        • Melia A.T.
        • Guerciolini R.
        • Chung J.
        • Kinberg J.
        • Hauptman J.B.
        • Patel I.H.
        Retrospective population-based analysis of the dose-response (fecal fat excretion) relationship of orlistat in normal and obese volunteers.
        Clin. Pharmacol. Ther. 1994; 56: 82-85
        • Hollander P.A.
        • Elbein S.C.
        • Hirsch I.B.
        • Kelley D.
        • McGill J.
        • Taylor T.
        • et al.
        Role of orlistat in the treatment of obese patients with type 2 diabetes.
        Diabetes Care. 1998; 21: 1288-1294
        • Sjöström L.
        • Rissanen A.
        • Andersen T.
        • Boldrin M.
        • Golay A.
        • Koppeschaar H.P.F.
        • et al.
        Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight gain in obese patients.
        Lancet. 1998; 352: 167-172
        • Davidson M.H.
        • Hauptman J.
        • DiGirolamo M.
        • Foreyt J.P.
        • Halsted C.H.
        • Heber D.
        • et al.
        Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat.
        J. Am. Med. Assoc. 1999; 281: 235-242
        • Hill J.O.
        • Hauptman J.
        • Anderson J.W.
        • Fujioka K.
        • O’Neil P.M.
        • Smith D.K.
        • Zavoral J.H.
        Orlistat, a lipase inhibitor, for weight maintenance after conventional dieting: a 1-year study.
        Am. J. Clin. Nutr. 1999; 69: 1108-1116