Pravastatin suppress superoxide and fibronectin production of glomerular mesangial cells induced by oxidized-LDL and high glucose


      Pravastatin is a potent inhibitor of HMG-CoA reductase and is effective in lowering serum lipid levels. Recent studies have shown that pravastatin also reduces oxidative modification of LDL and decreases albuminuria in patients with diabetes. To determine the possible benefit of pravastatin on the diabetic kidney, we have measured the effects of pravastatin on the proliferation and the production of superoxide and fibronectin, and the expression of fibronectin mRNA of glomerular mesangial cells stimulated by oxidized-LDL and high glucose. Our results demonstrated that the [3H]-labeled thymidine uptake of mesangial cells decreased after oxidized-LDL stimulation (50 μg/ml, 6 h) and increased after high glucose stimulation (25 mM, 48 h). The production of superoxide and fibronectin and the expression of fibronectin mRNA of glomerular mesangial cells were all significantly increased after stimulation with either oxidized-LDL or high glucose, or the combination of oxidized-LDL and high glucose. Pravastatin (100 μM, 48 h) alone had no effect on unstimulated cells. However, pravastatin significantly reversed thymidine uptake, inhibited the production of superoxide and fibronectin, and inhibited the expression of fibronectin mRNA of glomerular mesangial cells after stimulation with either oxidized-LDL or high glucose. Our results indicate that pravastatin may effect as an antioxidant and may suppress fibronectin synthesis of glomerular mesangial cells in diabetic patients with hyperlipidemia.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Sasaki T.
        • Kurata H.
        • Nomura K.
        • Utsunomiya K.
        • Ikeda Y.
        Amelioration of proteinuria with pravastatin in hypercholesterolemic patients with diabetes mellitus.
        Jpn. J. Med. 1990; 29: 156-163
        • Shoji T.
        • Nishizawa Y.
        • Toyokawa A.
        • Kawagisihi T.
        • Okuro Y.
        • Morii H.
        Decreased albuminuria by pravastatin in hyperlipidemic diabetics.
        Nephron. 1991; 59: 664-665
        • Harada N.
        • Kashiwagi A.
        • Nishio Y.
        • Kikkawa R.
        Effects of cholesterol-lowering treatments on oxidative modification of plasma intermediate density lipoprotein plus low density lipoprotein fraction in type 2 diabetic patients.
        Diab. Res. Clin. Pract. 1999; 43: 111-120
        • Yokota T.
        • Utsunomiya K.
        • Murakawa Y.
        • Kurata H.
        • Tajima N.
        Mechanism of preventive effect of HMG-CoA reductase inhibitor on diabetic nephropathy.
        Kidney Int. 1999; 71: S178-S181
        • D'Agati V.
        The many masks of focal segmental glomerulosclerosis.
        Kidney Int. 1994; 46: 1223-1241
        • Chen H.C.
        • Guh J.Y.
        • Shin S.J.
        • Tsai J.H.
        • Lai Y.H.
        Reactive oxygen species enhances endothelin-1 production of diabetic rat glomeruli in vitro and in vivo.
        J. Lab. Clin. Med. 2000; 135: 309-315
        • Roh D.D.
        • Kamanna V.S.
        • Kirschenbaum M.A.
        Oxidative modification of low-density lipoprotein enhances mesangial cell protein synthesis and gene expression of extracellular matrix proteins.
        Am. J. Nephrol. 1998; 18: 344-350
        • Bucala R.
        • Makita Z.
        • Koschinsky T.
        • Cerami A.
        • Vlassara H.
        Lipid advanced glycosylation: pathway for lipid oxidation in vivo.
        Proc. Natl. Acad. Sci. USA. 1993; 90: 6434-6438
        • Lu Y.
        • Li J.
        • Zheng X.
        Lipid-lowering effect of pravastatin on glomerulosclerosis protection and treatment.
        Chung. Hua. Nei. Ko. Tsa. Chih. 1997; 36: 242-245
        • Blaha V.
        • Zadak Z.
        • Solichova D.
        • Bratova M.
        • Havel E.
        Hypocholesterolemic effect of pravastatin is associated with increased content of antioxidant vitamin-E in cholesterol fractions.
        Acta. Medica. 1998; 41: 87-90
        • Chen H.C.
        • Guh J.Y.
        • Tsai J.H.
        • Lai Y.H.
        Induction of heat shock protein 70 protects mesangial cells against oxidative injury.
        Kidney. Int. 1999; 56: 1270-1273
        • Chen H.C.
        • Tsai J.C.
        • Lai Y.H.
        • Tsai J.H.
        Recombinant human erythropoietin enhance superoxide production by FMLP-stimulated leukocytes in hemodialysis patients.
        Kidney Int. 1997; 52: 1390-1394
        • Chen H.C.
        • Tan M.S.
        • Guh J.Y.
        • Tsai J.H.
        • Lai Y.H.
        Native and oxidized LDL enhance superoxide production from diabetic rat glomeruli.
        Kidney Blood Press Res. 2000; 23: 56-60
        • Deng Y.
        • Yu P.H.
        Simultaneous determination of formaldehyde and methylglyoxal in urine: involvement of semicarbazide-sensitive amine oxidase-mediated deamination in diabetic complications.
        J. Chromatogr. Sci. 1999; 37: 317-322
        • Ceriello A.
        • Bortolotti N.
        • Falletti E.
        • Taboga C.
        • Tonutti L.
        • Crescentini A.
        • et al.
        Total radical-trapping antioxidant parameter in NIDDM patients.
        Diab. Care. 1997; 20: 194-197
        • Wagner A.H.
        • Kohler T.
        • Ruckschloss U.
        • Just I.
        • Hecker M.
        Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 61-69
        • Kanno T.
        • Abe K.
        • Yabuki M.
        • Akiyama J.
        • Yasuda T.
        • Horton A.A.
        Selective inhibition of formyl-methionyl-leucyl-phenylalanine (fMLF)-dependent superoxide generation in neutrophils by pravastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase.
        Biochem. Pharmacol. 1999; 58: 1975-1980
        • Chana R.S.
        • Wheeler D.C.
        Fibronectin augments monocyte adhesion to low-density lipoprotein-stimulated mesangial cells.
        Kidney Int. 1999; 55: 179-188
        • Nishimura M.
        • Tanaka T.
        • Yasuda T.
        • Kurakata S.
        • Kitagawa M.
        • Yamada K.
        • et al.
        Effect of pravastatin on type IV collagen secretion and mesangial cell proliferation.
        Kidney Int. 1999; 71: S97-S100
        • Steffes M.W.
        • Bilous R.W.
        • Sutherland D.E.
        • Mauer S.M.
        Cell and matrix components of the glomerular mesangium in type 1 diabetes.
        Diabetes. 1992; 41: 679-684
        • Oh J.H.
        • Ha H.
        • Yu M.R.
        • Lee H.B.
        Sequential effects of high glucose on mesangial cell transforming growth factor-β, and fibronectin synthesis.
        Kidney Int. 1998; 54: 1872-1878
        • Nakamura T.
        • Fukui M.
        • Ebihara I.
        • Osada S.
        • Nagaoka I.
        • Tomino Y.
        • et al.
        mRNA expression of growth factors in glomeruli from diabetic rats.
        Diabetes. 1993; 42: 450-456
        • Krämer-Guth A.
        • Greiber S.
        • Pavenstädt H.
        • Quaschning T.
        • Winkler K.
        • Schollmeyer P.
        • et al.
        Interaction of oxidized lipoprotein(a) with human mesangial cells and matrix.
        Kidney Int. 1996; 49: 1250-1261
        • Aviram M.
        • Dankner G.
        • Cogan U.
        • Hochgraf E.
        • Brook G.
        Lovastatin inhibits low-density lipoprotein oxidation and alters its fluidity and uptake by macrophages: in vitro and in vivo studies.
        Metabolism. 1992; 41: 229-235
        • Anderson S.
        • Renuke H.G.
        • Brenner B.M.
        Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat.
        J. Clin. Invest. 1986; 77: 1993-2000
        • Hirano T.
        • Kamuro F.
        • Furukawa S.
        • Nagano S.
        • Takahashi T.
        Effect of pravastatin sodium, a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on very-low-density lipoprotein composition and kinetics in hyperlipidemia associated with experimental nephrosis.
        Metabolism. 1990; 39: 605-609
        • O'Donell M.P.
        • Kasiske B.L.
        • Kim Y.
        • Atluru D.
        • Keane W.F.
        Lovastatin inhibits proliferation of rat mesangial cells.
        J. Clin. Invest. 1993; 91: 83-87
        • Corsini A.
        • Mazzotti M.
        • Raiteri M.
        • Soma M.R.
        • Gabbiani G.
        • Fumagalli R.
        • et al.
        Relationship between mevalonate pathway and arterial myocyte proliferation: in vitro studies with inhibitors of HMG-CoA reductase.
        Atherosclerosis. 1993; 101: 117-125
        • Cuthbert J.A.
        • Lipsky P.E.
        Inhibition by 6-fluoromevalonate demonstrates that mevalonate or one of the mevalonate phosphate is necessary for lymphocyte proliferation.
        J. Biol. Chem. 1990; 265: 18568-18575
        • Goldstein J.L.
        • Brown M.S.
        Regulation of the mevalonate pathway.
        Nature. 1990; 343: 425-429
        • Sakai M.
        • Kobori S.
        • Matsumura T.
        • Biwa T.
        • Sato Y.
        • Takemura T.
        • et al.
        HMG-CoA reductase suppress macrophage growth induced by oxidized low density lipoprotein.
        Atherosclerosis. 1997; 133: 51-59
        • Weiss R.H.
        • Ramirez A.
        • Joo A.
        Short-term pravastatin mediates growth inhibition and apoptosis, independently of Ras, via the signaling proteins p27Kip1 and P13 kinase.
        J. Am. Soc. Nephrol. 1999; 10: 1880-1890