Advertisement

Intraperitoneal infusion of homocysteine increases intimal hyperplasia in balloon-injured rat carotid arteries

      Abstract

      Hyperhomocysteinemia is a significant risk factor in atherosclerosis and thrombosis. However, its role in the development of intimal hyperplasia after arterial reconstructive procedures remains uncertain. We therefore studied the effect of homocysteine on intimal hyperplasia in a rat model of carotid artery balloon injury. Twenty-four Spraque–Dawley rats were divided into three groups: control (saline infusion), and low dose (0.14 mg/day) and high dose (0.71 mg/day) homocysteine delivered continuously via osmotic pumps implanted intraperitoneally. All animals underwent left common carotid artery balloon denudation with sacrifice after 14 days. Plasma homocysteine levels, intimal hyperplasia, and cell proliferation of rat carotid arteries were determined. In vitro rat smooth muscle cell (SMC) proliferation with homocysteine treatment was also performed. Plasma homocysteine levels at sacrifice were 1.80±0.35, 2.65±0.05 and 3.50±0.22 μM in three groups, respectively. Intimal hyperplasia developed in all balloon-injured arteries in both control and homocysteine-treated animals. The intimal area and intima/media area ratio were increased by 92% (P<0.05) and 105% (P<0.05), respectively, in the high dose-homocysteine-treated animals as compared to the control animals. Homocysteine (high dose) also significantly promoted the intimal cell proliferation (bromodeoxyuridine incorporation) by 2.2-fold as compared to controls. Furthermore, homocysteine treatment in the cell culture study showed a concentration-dependent increase of rat SMC proliferation. These data demonstrate that the continuous intraperitoneal administration of homocysteine significantly increases intimal hyperplasia and SMC proliferation after carotid artery balloon injury in the rat as well as in vitro SMC proliferation. This study suggests that, following arterial reconstructive procedures, elevated plasma homocysteine may increase the complications of clinical restenoses that are associated with intimal hyperplasia.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mudd S.H.
        • Levy H.L.
        • Skovby F.
        Disorders of transsulfuration.
        in: Scriver C.R. Beaudet A.L. Slly W.S. Valle D. The metabolic and molecular basis of inherited disease, vol 1. 7. McGraw–Hill, New York, NY1995: 1279-1327
        • Selhub J.
        • Jacques P.F.
        • Wilson P.W.F.
        • Rush D.
        • Rosenberg I.H.
        Vitamin status and intake as primary determinants of homocystinemia in an elderly population.
        J. Am. Med. Ass. 1993; 270: 2693-2698
        • Jacques P.F.
        • Bostom A.G.
        • Williams R.R.
        • Ellison R.C.
        • Eckfeldt J.H.
        • Rosenberg I.H.
        • et al.
        Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine metabolism.
        Circulation. 1996; 93: 7-9
        • Finkelstein J.D.
        The metabolism of homocysteine: pathways and regulation.
        Eur. J. Pediat. 1998; 157: S40-44
        • Kraus J.P.
        Biochemistry and molecular genetics of cystathionine beta-synthase deficiency.
        Eur. J. Pediat. 1998; 157: S50-53
        • Mudd S.H.
        • Skovby F.
        • Levy H.L.
        • Pettigrew K.D.
        • Wilcken B.
        • Pyeritz R.E.
        • et al.
        The natural history of homocystinuria due to cystathionine beta-synthase deficiency.
        Am. J. Hum. Genet. 1985; 37: 1-31
        • McCully K.S.
        • Wilson R.B.
        Homocysteine theory of arteriosclerosis.
        Atherosclerosis. 1975; 22: 215-227
        • Taylor L.M.
        • DeFrang R.D.
        • Harris E.J.
        • Porter J.M.
        The association of elevated plasma homocyst(e)ine with progression of symptomatic peripheral arterial disease.
        J. Vasc. Surg. 1991; 13: 128-136
        • Malinow M.R.
        • Kang S.S.
        • Taylor L.M.
        • Wong P.W.K.
        • Coull B.
        • Inahara T.
        • et al.
        Prevalence of hyperhomocyst(e)inemia in patients with peripheral arterial occlusive disease.
        Circulation. 1989; 79: 1180-1188
        • Currie I.C.
        • Wilson Y.G.
        • Scott J.
        • Day A.
        • Stansbie D.
        • Baird R.N.
        • et al.
        Homocysteine: an independent risk factor for the failure of vascular intervention.
        Br. J. Surg. 1996; 83: 1238-1241
        • Irvine C.
        • Wilson Y.G.
        • Currie I.C.
        • McGrath C.
        • Scott J.
        • Day A.
        • et al.
        Hyperhomocysteinaemia is a risk factor for vein graft stenosis.
        Eur. J. Vasc. Endovasc. Surg. 1996; 12: 304-309
        • Selhub J.
        • Jacques P.F.
        • Bostom A.G.
        • D'Agostino R.B.
        • Wilson P.F.
        • Belanger A.J.
        • et al.
        Association between plasma homocysteine concentrations and extracranial carotid artery stenosis.
        New Engl. J. Med. 1995; 332: 286-291
        • Heijer M.D.
        • Koster T.
        • Blom H.J.
        • Bos G.M.J.
        • Briet E.
        • Reitsma P.H.
        • et al.
        Hyperhomocysteinemia as a risk factor for deep-vein thrombosis.
        New Engl. J. Med. 1996; 334: 759-762
        • Ridker P.M.
        • Hennekens C.H.
        • Selhub J.
        • Miletich J.P.
        • Malinow M.R.
        • Stampfer M.J.
        Interrelation of hyperhomocyst(e)inemia, Factor V Leiden, and risk of future venous thromboembolism.
        Circulation. 1997; 95: 1777-1782
        • Stampfer M.J.
        • Malinow M.R.
        • Willett W.C.
        • Newcomer L.M.
        • Upson B.
        • Ullmann D.
        • et al.
        A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians.
        J. Am. Med. Ass. 1992; 268: 877-881
        • Yutani C.
        • Imakita M.
        • Ishibashi-Ueda H.
        • Tsukamoto Y.
        • Nishida N.
        • Ikeda Y.
        Coronary atherosclerosis and interventions: pathological sequences and restenosis [Review].
        Path. Internat. 1999; 49: 273-290
        • Schwartz R.S.
        Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling [Review].
        Am. J. Cardiol. 1998; 81: 14E-17
        • Schwartz S.M.
        Smooth muscle migration in atherosclerosis and restenosis.
        J. Clin. Invest. 1997; 100: S87-89
        • Bauters C.
        • Isner J.M.
        The biology of restenosis [Review].
        Prog. Cardiovasc. Dis. 1997; 40: 107-116
        • Clowes A.W.
        • Reidy M.A.
        • Clowes M.M.
        Kinetics of cellular proliferation after arterial injury, I: smooth muscle growth in the absence of endothelium.
        Lab. Invest. 1983; 49: 327-333
        • Chen C.
        • Mattar S.G.
        • Lumsden A.B.
        Oral administration of L-arginine reduces intimal hyperplasia in balloon-injured carotid arteies.
        J. Surg. Res. 1999; 82: 17-23
        • Chen C.
        • Hanson S.R.
        • Lumsden A.B.
        Boundary layer infusion of heparin prevents thrombosis and reduces neointimal hyperplasia in venous PTFE grafts without systemic anticoagulation.
        J. Vas. Surg. 1995; 22: 237-247
        • Chen C.
        • Mattar S.G.
        • Hughes J.D.
        • Hanson S.R.
        • Ku D.N.
        • Lumsden A.B.
        Recombinant mitotoxin basic FGF saporin reduces venous intimal hyperplasia.
        Circulation. 1996; 94: 1989-1995
        • Chen X.L.
        • Tummala P.E.
        • Olbrych M.T.
        • Alexander R.W.
        • Medford R.M.
        Angiogensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells.
        Circ. Res. 1998; 83: 952-959
        • Iademarco M.F.
        • McQuillan J.J.
        • Rosen G.D.
        • Dean D.C.
        Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1).
        J. Biol. Chem. 1992; 276: 16323-16329
        • Clowes A.W.
        • Reidy M.A.
        • Clowes M.M.
        Mechanisms of stenosis after arterial injury.
        Lab. Invest. 1983; 49: 208-215
        • Ferns G.A.
        • Stewart-Lee A.L.
        • Anggard E.E.
        Arterial response to mechanical injury: balloon catheter deendothelialization.
        Atherosclerosis. 1992; 92: 89-104
        • Liu M.W.
        • Roubin G.S.
        • King SB III.
        Restenosis after coronary angioplasty: potential biologic determinants and role of intimal hyperplasia.
        Circulation. 1989; 79: 1374-1387
        • Southern F.N.
        • Cruz N.
        • Fink L.M.
        • Cooney C.A.
        • Barone G.W.
        • Eidt J.F.
        • et al.
        Hyperhomocysteinemia increases intimal hyperplasia in a rat carotid endarterectomy model.
        J. Vasc. Surg. 1998; 28: 909-918
        • House J.D.
        • Brosnan M.E.
        • Brosnan J.T.
        Renal uptake and excretion of homocysteine in rats with acute hyperhomocysteinemia.
        Kidney Int. 1998; 54: 1601-1607
        • Jacobs R.L.
        • House J.D.
        • Brosnan M.E.
        • Brosnan J.T.
        Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metablism in the rat.
        Diabetes. 1998; 47: 1967-1970
        • Vester B.
        • Rasmussen K.
        High performance liquid chromatography method for rapid and accurate determination of homocysteine in plasma and serum.
        Eur. J. Clin. Chem. Clin. Biochem. 1991; 29: 549-554
        • Chen C.
        • Halkos M.E.
        • Surowiec S.M.
        • Conklin B.S.
        • Lin P.H.
        • Lumsden A.B.
        Effects of homocysteine on smooth muscle cell proliferation in both cell culture and artery perfusion culture models.
        J. Surg. Res. 2000; 88: 26-33
        • Ueland P.M.
        • Refsum H.
        • Stabler S.P.
        • Malinow M.R.
        • Andersson A.
        • Allen R.H.
        Total homocysteine in plasma or serum: methods and clinical applications.
        Clin. Chem. 1993; 39: 1764-1779
        • Kang S.S.
        • Wong P.W.
        • Malinow M.R.
        Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease.
        Ann. Rev. Nutr. 1992; 12: 279-298
        • Ross R.
        The pathogenesis of atherosclerosis: a perspective for the 1990s.
        Nature (Lond.). 1993; 362: 801-809
        • Schwartz S.M.
        • Heimark R.L.
        • Majesky M.W.
        Developmental mechanisms underlying pathology of arteries.
        Physiol. Rev. 1990; 70: 1177-1209
        • Harker L.A.
        • Harlan J.M.
        • Ross R.
        Effect of sulfinpyrazone on homocysteine-induced endothelial injury and arteriosclerosis in baboons.
        Circ. Res. 1983; 53: 731-739
        • Tsai J.C.
        • Perrella M.A.
        • Yoshizumi M.
        • Hsieh C.M.
        • Haber E.
        • Schlegel R.
        • et al.
        Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis.
        Proc. Natl. Acad. Sci. USA. 1994; 91: 6369-6373
        • Tsai J.C.
        • Wang H.
        • Perrella M.A.
        • Yoshizumi M.
        • Sibinga N.E.
        • Tan L.C.
        • et al.
        Induction of cyclin A gene expression by homocysteine in vascular smooth muscle cells.
        J. Clin. Invest. 1996; 97: 146-153
        • Damon D.H.
        • Lange D.L.
        • Hattler B.G.
        In vitro and in vivo vascular actions of basic fibroblast growth factor (bFGF) in normotensive and spontaneously hypertensive rats.
        J. Cardiovasc. Pharm. 1997; 30: 278-284
        • Nishio E.
        • Watanabe Y.
        Homocysteine as a modulator of platelet-derived growth factor action in vascular smooth muscle cells: a possible role for hydrogen peroxide.
        Br. J. Pharm. 1997; 122: 269-274
        • Fishman J.A.
        • Ryan G.B.
        • Karnovsky M.J.
        Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening.
        Lab. Invest. 1975; 32: 339-351
        • Haudenschild C.C.
        • Schwartz S.M.
        Endothelial regeneration. II. Restitution of endothelial continuity.
        Lab. Invest. 1979; 41: 407-418
        • Stemerman M.B.
        • Spaet T.H.
        • Pitlick F.
        • Cintron P.J.
        • Lejieks I.
        • Tiell M.L.
        Intimal healing: the pattern of reendothelialization and intimal thickening.
        Am. J. Pathol. 1977; 87: 125-142
        • Clowes A.W.
        • Reidy M.A.
        • Clowes M.M.
        Kinetics of cellular proliferation after arterial injury I. Smooth muscle growth in the absence of endothelium.
        Lab. Invest. 1983; 49: 327-333
        • Furchgott R.F.
        • Zawadzki J.V.
        The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.
        Nature. 1980; 288: 373-376
        • Palmer R.M.
        • Ferrige A.G.
        • Moncada S.
        Nitric oxide release accounts for the biological activity of endothelium-derived relaxation factor.
        Nature. 1987; 327: 524-536
        • Garg U.C.
        • Hassid A.
        Nitric oxide-generating vasodilators and 8-bromo-cGMP inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells.
        J. Clin. Invest. 1989; 83: 1774-1777
        • Scott-Burden T.
        • Vanhoutte P.M.
        Regulation of smooth muscle cell growth by endothelium-derived factors.
        Tex. Heart Inst. J. 1994; 21: 91-97
        • Mellion B.T.
        • Ignarro L.J.
        • Myers C.B.
        • Ohlstein E.H.
        • Ballot B.A.
        • Hyman A.L.
        • et al.
        Inhibition of human platelet aggregation by S-nitrosothiols. Heme-dependent activation of soluble guanylate cyclase and stimulation of cyclic GMP accumulation.
        Mol. Pharmacol. 1983; 23: 653-664
        • Lentz S.R.
        • Sobey C.G.
        • Piegors D.J.
        • Bhopatkar M.Y.
        • Faraci F.M.
        • Malinow M.R.
        • et al.
        Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia.
        J. Clin. Invest. 1996; 98: 24-29
        • Celermajer D.S.
        • Sorensen K.
        • Ryalls M.
        • Robinson J.
        • Thomas O.
        • Leonard J.V.
        • et al.
        Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not their heterozygous parents.
        J. Am. Coll. Cardiol. 1993; 22: 854-858
        • Tawakol A.
        • Omland T.
        • Gerhard M.
        • Wu J.T.
        • Creager M.A.
        Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans.
        Circulation. 1997; 95: 1119-1121
        • Woo K.S.
        • Chook P.
        • Lolin Y.I.
        • Cheung A.S.P.
        • Chan L.T.
        • Sun Y.Y.
        • et al.
        Hyperhomocyst(e)inemia is a risk factor for arterial endothelial dysfunction in humans.
        Circulation. 1997; 96: 2542-2544
        • Lang D.
        • Kredan M.B.
        • Moat S.J.
        • Hussain S.A.
        • Powell C.A.
        • Bellamy M.F.
        • et al.
        Homocysteine-induced inhibition of endothelium-dependent relaxation in rabbit aorta: role for superoxide anions.
        Arterio. Throm. Vasc. Biol. 2000; 20: 422-427
        • Starkebaum G.
        • Harlan J.M.
        Endothclial cell injury due to coppercatalyzed hydrogen peroxide generation from homocysteine.
        J. Clin. Invest. 1993; 77: 1370-1376
        • Loscalzo J.
        The oxidant stress of hyperhomocyst(e)inemia.
        J. Clin. Invest. 1996; 98: 5-7
        • Upchurch G.R.
        • Welch G.N.
        • Fabian A.J.
        • Freedman J.E.
        • Johnson J.L.
        • Keaney J.F.
        • et al.
        Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase.
        J. Biol. Chem. 1997; 272: 17012-17017
        • Gryglewski R.J.
        • Palmer R.M.
        • Moncada S.
        Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor.
        Nature. 1986; 320: 454-456
        • Winkler B.S.
        • Orselli S.M.
        • Rex T.S.
        The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective.
        Free Radic. Biol. Med. 1994; 17: 333-339
        • Ratnoff O.D.
        Activation of Hageman factor by L-homocystine.
        Science. 1968; 162: 1007-1009
        • Rodgers G.M.
        • Kane W.H.
        Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator.
        J. Clin. Invest. 1986; 77: 1909-1916
        • Rodgers G.M.
        • Conn M.T.
        Homocysteine, an atherogenic stimulus, reduces protein C activation by arterial and venous endothelial cells.
        Blood. 1990; 75: 895-901
        • Lentz S.R.
        • Sadler J.E.
        Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homocysteine.
        J. Clin. Invest. 1991; 88: 1906-1914
        • Fryer R.H.
        • Wilson B.D.
        • Gubler D.B.
        • Fitzgerald L.A.
        • Rodgers G.M.
        Homocysteine, a risk factor for premature vascular disease and thrombosis, induces tissue factor activity in endothelial cells.
        Arterioscler. Thromb. 1993; 13: 1327-1333
        • Nishinaga M.
        • Ozawa T.
        • Shimada K.
        Homocysteine, a thrombogenic agent, suppresses anticoagulant heparan sulfate expression in cultured porcine aortic endothelial cells.
        J. Clin. Invest. 1993; 92: 1381-1386
        • Naruszewicz M.
        • Mirkiewicz E.
        • Olszewski A.J.
        Thiolation of low-density lipoprotein by homocysteine thiolactone causes increased aggregation and altered interaction with cultured macrophages.
        Nutr. Metab. Cardiovasc. Dis. 1994; 4: 70-77