Advertisement

Oxidized low density lipoprotein-induced LFA-1-dependent adhesion and transendothelial migration of monocytes via the protein kinase C pathway

      Abstract

      Inflammatory and immune responses are highly relevant processes in the pathogenesis of atherosclerosis, as illustrated by the central event of monocyte accumulation in atherosclerotic plaques. Integrin LFA-1-mediated adhesion of circulating monocytes to the endothelium is a prerequisite for recruitment of monocytes to these areas. Integrin-mediated adhesion is tightly regulated and integrins are only functional in response to particular monocyte activation stimuli. We investigated the role of oxidized low-density lipoprotein (LDL) in adhesion of resting monocytes prepared by elutriation from endothelium. Our results showed that: (1) oxidized LDL (and MCP-1) induced both LFA-1-mediated adhesion of monocytes to endothelial cells and transendothelial migration of monocytes; (2) oxidized LDL functionally transformed monocyte LFA-1 to an activated form; (3) oxidized LDL induced F-actin polymerization and cytoskeletal rearrangement within seconds; and (4) the LDL-associated antioxidant, α-tocopherol, but not β-tocopherol, inhibited both F-actin polymerization and LFA-1-mediated adhesion of monocytes, which paralleled the effect of protein kinase C (PKC) inhibitors. Our results indicate that oxidized LDL plays a pivotal role in triggering LFA-1 activation and LFA-1-mediated adhesion and transmigration of monocytes to sites of atherosclerotic plaques, via the PKC pathway.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ross R.
        The pathogenesis of atherosclerosis: a perspective for the 1990s.
        Nature. 1993; 362: 801-809
        • Terkeitaub R.
        • Boisvert W.A.
        • Curtiss L.K.
        Chemokines and atherosclerosis.
        Curr. Opin. Lipidol. 1998; 9: 397-405
        • Butcher E.C.
        Leukocyte-endothelial cell recognition: Three (or more steps to specificity and diversity).
        Cell. 1991; 67: 1033-1036
        • Shimizu Y.
        • Newman W.
        • Tanaka Y.
        • Shaw S.
        Lymphocyte interactions with endothelial cells.
        Immunol. Today. 1992; 13: 106-112
        • Tanaka Y.
        • Adams D.H.
        • Hubscher S.
        • Hirano H.
        • Siebenllist U.
        • Shaw S.
        T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1β.
        Nature. 1993; 361: 79-83
        • Springer T.A.
        Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm.
        Cell. 1994; 76: 301-314
        • Shimizu Y.
        • Newman W.
        • Gopal T.V.
        • Horgan K.J.
        • Graber N.
        • Beall L.D.
        • Van Seventer G.A.
        • Shaw S.
        Four molecular pathways of T cell adhesion to endothelial cells: Roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions.
        J. Cell Biol. 1991; 113: 1203-1212
        • Tanaka Y.
        • Mine S.
        • Figdor C.G.
        • Wake A.
        • Hirano H.
        • Tsukada J.
        • Aso M.
        • Fujii K.
        • Saito K.
        • van Kooyk Y.
        • Eto S.
        Constitutive chemokine production results in activation of LFA-1 on adult T cell leukemia cells.
        Blood. 1998; 91: 3909-3919
        • Tanaka Y.
        • Mine S.
        • Hanagiri T.
        • Hiraga T.
        • Morimoto I.
        • Figdor C.G.
        • van Kooyk Y.
        • Ozawa H.
        • Nakamura T.
        • Yasumoto K.
        • Eto S.
        Constitutive up-regulation of integrin-mediated adhesion of tumor-infiltrating lymphocytes to osteoblasts and bone marrow-derived stromal cells.
        Cancer Res. 1998; 58: 4138-4145
        • Tanaka Y.
        • Fujii K.
        • Hubscher S.
        • Aso M.
        • Takazawa A.
        • Saito K.
        • Ota T.
        • Eto S.
        Heparan sulfate proteoglycan on endothelium efficiently induces integrin-mediated T cell adhesion by immobilizing chemokines in rheumatoid synovitis.
        Arthritis Rheum. 1998; 41: 1365-1377
        • Adams D.H.
        • Shaw S.
        Leukocyte-endothelial interactions and regulation of leukocyte migration.
        Lancet. 1994; 343: 831-836
        • Springer T.A.
        Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration.
        Ann. Rev. Physiol. 1995; 57: 827-872
        • Adams D.H.
        • Harvath L.
        • Bottaro D.P.
        • Interrante R.
        • Catalano G.
        • Tanaka Y.
        • Strain A.
        • Hubscher S.G.
        • Shaw S.
        Hepatocyte growth factor and macrophage inflammatory protein-1β: structurally distinct cytokines that induce rapid cytoskeletal changes and subset-preferential migration in T cells.
        Proc. Natl. Acad. Sci. USA. 1994; 91: 7144-7148
        • Mine S.
        • Tanaka Y.
        • Suematsu M.
        • Aso M.
        • Fujisaki T.
        • Yamada S.
        • Eto S.
        Hepatocyte growth factor is a potent trigger of neutrophil adhesion through rapid activation of lymphocyte function-associated antigen-1.
        Lab. Invest. 1998; 78: 1395-1404
        • Steinberg D.
        Low density lipoprotein oxidation and its pathobiological significance.
        J. Biol. Chem. 1997; 272: 20963-20966
        • Khoo J.C.
        • Miller E.
        • McLoughlin P.
        • Steinberg D.
        Enhanced macrophage uptake of low density lipoprotein after self-aggregation.
        Arteriosclerosis. 1988; 8: 348-358
        • Khoo J.C.
        • Miller E.
        • Pio F.
        • Steinberg D.
        • Witztum J.L.
        Monoclonal antibodies against LDL further enhance macrophage uptake of LDL aggregates.
        Arterioscler. Thromb. 1992; 12: 1258-1266
        • Morel D.W.
        • Hessler J.R.
        • Chisholm G.M.
        Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid.
        J. Lipid Res. 1983; 24: 1070-1076
        • Griendling K.K.
        • Alexander R.W.
        Oxidative stress and cardiovascular disease.
        Circulation. 1997; 96: 3264-3265
        • Han J.
        • Hajjar D.P.
        • Febbraio M.
        • Nicholson A.C.
        Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36.
        J. Biol. Chem. 1997; 272: 21654-21659
        • Lehr H.A.
        • Krombach F.
        • Münzing S.
        • Bodlaj R.
        • Glaubitt S.I.
        • Seiffge D.
        • Hübner C.
        • von Andrian U.H.
        • Messmer K.
        In vitro effects of oxidized low density lipoprotein on CD11b/CD18 and l-selectin presentation on neutrophils and monocytes with relevance for the in vivo situation.
        Am. J. Pathol. 1995; 146: 218-227
        • Mehta J.L.
        • Chen L.Y.
        Reversal by high-density lipoprotein of the effect of oxidized low-density lipoprotein on nitric oxide synthase protein expression in human platelets.
        J. Lab. Clin. Med. 1996; 127: 287-295
        • Lehr H.A.
        • Kröber M.
        • Hübner C.
        • Vajikoczy M.D.
        • Manger D.
        • Nolte A.
        • Kohlschütter A.
        • Messmer K.
        Stimulation of leukocyte/endothelium interaction by oxidized low-density lipoprotein in hairless mice.
        Lab. Invest. 1993; 68: 388-395
        • McMurray H.F.
        • Parthasarathy S.
        • Steinberg D.
        Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes.
        J. Clin. Invest. 1993; 92: 1004-1008
        • Jeng J.R.
        • Chang C.H.
        • Shieh S.M.
        • Chiu H.C.
        Oxidized low density lipoprotein enhances monocyte-endothelial cell binding against shear-stress-induced detachment.
        Biochim. Biophys. Acta. 1993; 1178: 221-227
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265-275
        • Böyum A.
        Isolation of mononuclear cells and granulocytes from human blood.
        Scand. J. Clin. Lab. Invest. 1968; 21: 77-89
        • Wahl S.M.
        • Katona I.M.
        • Stadler B.M.
        • Wilder R.L.
        • Helsel W.E.
        • Wahl L.M.
        Isolation of human mononuclear cell subsets by counterflow centrifugal elutriation (CCE).
        Cell. Immunol. 1984; 85: 384-395
        • Jaffe E.A.
        • Nachman R.L.
        • Becker C.G.
        • Minick R.
        Culture of human endothelial cells derived from umbilical veins.
        J. Clin. Invest. 1973; 52: 2745-2756
        • Tanaka Y.
        • Albelda S.M.
        • Horgan K.J.
        • van Seventer G.A.
        • Shimizu Y.
        • Newman W.
        • Hallam J.
        • Newman P.J.
        • Buck C.A.
        • Shaw S.
        CD31 expressed on distinctive T cell subsets is a preferential amplifier of β1 integrin-mediated adhesion.
        J. Exp. Med. 1992; 176: 245-253
        • Ades E.W.
        • Candel F.J.
        • Swerlick R.A.
        • George V.G.
        • Summers S.
        • Bosse D.C.
        • Lawley T.J.
        HMEC-1: establishment of an immortalized human microvascular endothelial cell line.
        J. Invest. Dermatol. 1992; 99: 683-690
        • Tanaka Y.
        • Wake A.
        • Horgan K.J.
        • Murakami S.
        • Aso M.
        • Saito K.
        • Oda S.
        • Morimoto I.
        • Uno H.
        • Kikuchi H.
        • Izumi Y.
        • Eto S.
        Distinct phenotype of leukemic T cells with various tissue tropism.
        J. Immunol. 1997; 158: 3822-3829
        • Lub M.
        • Kooyk Y.V.
        • Figdor C.G.
        Ins and outs of LFA-1.
        Immunol. Today. 1995; 16: 479-483
        • Stewart M.P.
        • Cabañas C.
        • Hogg N.
        T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1.
        J. Immunol. 1996; 156: 1810-1817
        • Diamond M.S.
        • Springer T.A.
        The dynamic regulation of integrin adhesiveness.
        Curr. Biol. 1994; 4: 506-517
        • van Kooyk Y.
        • Weder P.
        • Heije K.
        • Figdor C.G.
        Extracellular Ca2+ modulates leukocyte function-associated antigen-1 cell surface distribution on T lymphocytes and consequently affects cell adhesion.
        J. Cell Biol. 1994; 124: 1061-1070
        • Gerrit D.
        • Visser W.
        • Vliem M.
        • Figdor C.G.
        A monoclonal antibody (NKI-L16) directed against a unique epitope on the α-chain of human leukocyte function-associated antigen 1 induces homotypic cell-cell interactions.
        J. Immunol. 1988; 140: 1393-1400
        • Hynes R.O.
        Integrins: versatility, modulation, and signaling in cell adhesion.
        Cell. 1992; 69: 11-25
        • Boscoboinik D.
        • Szewczyk A.
        • Hensey C.
        • Azzi A.
        Inhibition of cell proliferation by α-tocopherol.
        J. Biol. Chem. 1991; 266: 6188-6194
        • Tasinato A.
        • Boscoboinik D.
        • Bartoli G.M.
        • Maroni P.
        • Azzi A.
        D-α-tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations, correlates with protein kinase C inhibition, and is independent of its antioxidant properties.
        Proc. Natl. Acad. Sci. USA. 1995; 92: 12190-12194
        • Ross R.
        Atherosclerosis- An inflammatory disease.
        New Engl. J. Med. 1999; 340: 115-126
        • Tanaka Y.
        • Adams D.H.
        • Shaw S.
        Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes.
        Immunol. Today. 1993; 14: 111-115
        • Tanaka Y.
        • Kimata K.
        • Adams D.H.
        • Eto S.
        Modulation of cytokine function by heparan sulfate proteoglycans: sophisticated models for the regulation of cellular responses to cytokines.
        Proc. Assoc. Am. Physicians. 1998; 110: 118-125
        • Cassimeris L.
        • McNeill H.
        • Zigmond S.H.
        Chemoattractant-stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities.
        J. Cell Biol. 1990; 110: 1067-1075
        • Howard T.H.
        • Oresajo C.O.
        The kinetics of chemotactic peptide-induced change in F-actin content, F-actin distribution, and the shape of neutrophils.
        J. Cell Biol. 1985; 101: 1078-1085
        • Coates T.D.
        • Watts R.G.
        • Hartman R.
        • Howard T.H.
        Relationship of F-actin distribution to development of polar shape in human poylmorphonuclear neutrophils.
        J. Cell Biol. 1992; 117: 765-774
        • Stewart M.P.
        • Cabanas C.
        • Hogg N.
        T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1.
        J. Immunol. 1996; 156: 1810
        • Shimizu Y.
        • Hunt III, S.W.
        Regulating integrin-mediated adhesion: one more function for PI 3-kinase?.
        Immunol. Today. 1996; 17: 565-573
        • Bargatze R.F.
        • Butcher E.C.
        Rapid G protein-regulated activation event involved in lymphocyte binding to high endothelial venules.
        J. Exp. Med. 1993; 187: 367-372
        • Bokoch G.M.
        Chemoattractant signaling and leukocyte activation.
        Blood. 1995; 86: 1649
        • Azzi A.
        • Aratri E.
        • Boscoboinik D.
        • Clément S.
        • Özer N.K.
        • Ricciarelli R.
        • Spycher S.
        Molecular basis of α-tocopherol control smooth muscle cell proliferation.
        BioFactors. 1998; 7: 3-14
        • Cachia O.
        • Benna J.E.
        • Pedruzzi E.
        • Descomps B.
        • Gougerot-Pocidalo M.A.
        • Leger C.J.
        tocopherol inhibits the respiratory burst in human monocytes.
        J. Biol. Chem. 1998; 273: 32801-32805