Clinicopathological significance of lipid peroxidation in carotid plaques


      Several reports have suggested an association between lipid peroxidation and human carotid atherosclerosis, but few reports have demonstrated a link between lipid peroxidation and carotid plaques in humans. In this study, we investigated the relationship between clinical features, histopathological characteristics and lipid peroxidation in patients undergoing carotid endarterectomy (CEA). Forty-one carotid plaques were obtained. A portion of the most severe lesions was subjected to histopathologic examination, and the remainder of the plaques examined for lipid peroxidation. Thiobarbituric acid-reactive substances (TBARS) values were determined as a marker for lipid peroxidation. The lipid-rich core (LC) and macrophage infiltration (Mφ) component as a percentage of total plaque area were measured morphometrically. Based on the results, all plaques were classified into four groups. Group I (GI): LC <10%; Group IIa (GIIa): LC 10–30%, Mφ <5%; Group IIb (GIIb): LC 10–30%, Mφ ≥5%, and Group III (GIII): LC ≥30%. The plaque TBARS values of GIII were significantly higher than those of GI, GIIa, and GIIb. The TBARS values of GIIb were one-and-a-half times higher than those of GIIa. Our results show that lipid peroxidation in carotid plaques is significantly associated with carotid atherosclerosis, especially plaque instability. These findings provide direct evidence of an association between lipid peroxidation and human atherosclerosis.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • van Swijndregt A.D.M.
        • Elbers H.R.J.
        • Moll F.L.
        • Letter J.
        • Ackerstaff R.G.A.
        Cerebral ischemic disease and morphometric analyses of carotid plaques.
        Ann. Vasc. Surg. 1999; 13: 468-474
        • van Swijndregt A.D.M.
        • Elbers H.R.J.
        • Moll F.L.
        • Letter J.
        • Ackerstaff R.G.A.
        Ultrasonographic characterization of carotid plaques.
        Ultrasound Med. Biol. 1998; 24: 489-493
        • Grønholdt M.L.M.
        Ultrasound and lipoproteins as predictors of lipid-rich, rupture-prone plaques in the carotid artery.
        Arterioscler. Thromb. Vasc. Biol. 1999; 19: 2-13
        • Hatsukami T.S.
        • Ferguson M.S.
        • Beach K.W.
        • Gordon D.
        • Detmer P.
        • Burns D.
        • Alpers C.
        • Strandness Jr., D.E.
        Carotid plaque morphology and clinical events.
        Stroke. 1997; 28: 95-100
        • Feeley T.M.
        • Leen E.J.
        • Colgan M.P.
        • Hourihane D.O.B.
        • Shanik G.D.
        Histologic characteristics of carotid artery plaque.
        J. Vasc. Surg. 1991; 13: 719-724
        • Seeger J.M.
        • Barratt E.
        • Lawson G.A.
        • Klingman N.
        The relationship between carotid plaque composition, plaque morphology, and neurologic symptoms.
        J. Surg. Res. 1995; 58: 330-336
        • Bassiouny H.S.
        • Davis H.
        • Massawa N.
        • Gewertz B.L.
        • Glagov S.
        • Zarins C.K.
        Critical carotid stenosis: morphologic and chemical similarity between symptomatic and asymptomatic plaques.
        J. Vasc. Surg. 1989; 9: 202-212
        • Ross R.
        Atherosclerosis—an inflammatory disease.
        N. Engl. J. Med. 1999; 340: 115-126
        • Steinberg D.
        • Parthasarathy S.
        • Carew T.E.
        • Khoo J.C.
        • Witztum J.L.
        Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity.
        N. Engl. J. Med. 1989; 320: 915-924
        • Penn M.S.
        • Chisolm G.M.
        Oxidized lipoproteins, altered cell function and atherosclerosis.
        Atherosclerosis. 1994; 108: S21-S29
        • Esterbauer H.
        • Gebicki J.
        • Puhl H.
        • Jürgens G.
        The role of lipid peroxidation and antioxidants in oxidative modification of LDL.
        Free Radic. Biol. Med. 1992; 13: 341-390
        • Griendling K.K.
        • Alexander R.W.
        Oxidative stress and cardiovascular disease.
        Circulation. 1997; 96: 3264-3265
        • de Zwart L.L.
        • Meerman J.H.N.
        • Commandeur J.N.M.
        • Vermeulen N.P.E.
        Biomarkers of free radical damage applications in experimental animals and in humans.
        Free Radic. Biol. Med. 1999; 26: 202-226
        • Kühn H.
        • Heydeck D.
        • Hugou I.
        • Gniwotta C.
        In vivo action of 15-lipoxygenase in early stages of human atherogenesis.
        J. Clin. Invest. 1997; 99: 888-893
        • Mallat Z.
        • Nakamura T.
        • Ohan J.
        • Lesèche G.
        • Tedgui A.
        • Maclouf J.
        • Murphy R.C.
        The relationship of hydroxyeicosatetraenoic acids and F2-isoprostanes to plaque instability in human carotid atherosclerosis.
        J. Clin. Invest. 1999; 103: 421-427
        • Suarna C.
        • Dean R.T.
        • May J.
        • Stocker R.
        Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of α-tocopherol and ascorbate.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1616-1624
        • Salonen J.T.
        • Nyyssönen K.
        • Salonen R.
        • Porkkala-Sarataho E.
        • Tuomainen T.P.
        • Dictzfalusy U.
        • Björkhem I.
        Lipoprotein oxidation and progression of carotid atherosclerosis.
        Circulation. 1997; 95: 840-845
        • Konukoglu D.
        • Serin Ö.
        • Kemerli G.D.
        • Serin E.
        • Hayirliglu A.
        • Öner B.
        A study on the carotid artery intima-media thickness and its association with lipid peroxidation.
        Clin. Chim. Acta. 1998; 277: 91-98
        • Bonithon-Kopp C.
        • Coudray C.
        • Berr C.
        • Touboul P.J.
        • Fève J.M.
        • Favier A.
        • Ducimetière P.
        Combined effects of lipid peroxidation and antioxidant status on carotid atherosclerosis in a population aged 59–71 y: the EVA Study.
        Am. J. Clin. Nutr. 1997; 65: 121-127
        • Andrews B.
        • Burnand K.
        • Paganga G.
        • Browse N.
        • Rice-Evans C.
        • Sommerville K.
        • Leake D.
        • Taub N.
        Oxidisability of low density lipoproteins in patients with carotid or femoral artery atherosclerosis.
        Atherosclerosis. 1995; 112: 77-84
        • Halliwell B.
        • Chinco S.
        Lipid peroxidation: its mechanism, measurement, and significance.
        Am. J. Clin. Nutr. 1993; 57: 715S-725S
        • The Ad Hoc Committee, American Heart Association
        Guidelines for carotid endarterectomy.
        Stroke. 1995; 26: 188-201
        • Executive Committee for the Asymptomatic Carotid Atherosclerosis Study
        Endarterectomy for asymptomatic carotid artery stenosis.
        JAMA. 1995; 273: 1421-1428
        • North American Symptomatic Carotid Endarterectomy Trial Collaborators
        Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis.
        N. Engl. J. Med. 1991; 325: 445-453
        • Uno M.
        • Ueda S.
        • Shinno K.
        • Nishi K.
        • Nishitani K.
        • Nagahiro S.
        Coronary artery stenosis evaluated by combined carotid and coronary angiography in patients undergoing carotid endarterectomy.
        Neurol. Med. Chir. (Tokyo). 1999; 39: 567-574
        • Ohkawa H.
        • Ohishi N.
        • Yagi K.
        Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.
        Anal. Biochem. 1979; 95: 351-358
        • Richard M.J.
        • Portal B.
        • Meo J.
        • Coudray C.
        • Hadjian A.
        • Favier A.
        Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid.
        Clin. Chem. 1992; 38: 704-709
        • Ledwozyw A.
        • Michalak J.
        • Stepien A.
        • Kadziolka A.
        The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis.
        Clin. Chim. Acta. 1986; 155: 275-284
        • European Carotid Plaque Study Group
        Carotid artery composition—relationship to clinical presentation and ultrasound B-mode imaging.
        Eur. J. Vasc. Endovasc. Surg. 1995; 10: 23-30
        • The American Heart Association and The National Heart, Lung, and Blood Institute
        The cholesterol facts: a summary of the evidence relating dietary fats, serum cholesterol, and coronary heart disease.
        Circulation. 1990; 81: 1721-1733
        • Tell G.S.
        • Crouse J.R.
        • Furberg C.D.
        Relation between blood lipids, lipoproteins, and cerebrovascular atherosclerosis: a review.
        Stroke. 1988; 19: 423-430
        • Alessandri C.
        • Germani M.
        • Censi C.
        • Rudelli G.
        • Iuliano L.
        • Servi M.
        • Ghiselli A.
        • Violi F.
        Plasma thiobarbituric acid reactive substances a predictive marker of cerebral ischemia in patients at high risk?.
        Acta Neurol. Scand. 1991; 83: 323-327
        • Kawamoto M.
        • Kagami M.
        • Terashi A.
        Serum lipid peroxide level in apoplexia.
        J. Clin. Biochem. Nutr. 1986; 1: 1-3