Advertisement

Is there a genetic basis for resistance to atherosclerosis?

      Abstract

      Atherosclerosis and its major clinical manifestation, coronary heart disease, is and will remain the main cause of mortality. Reviews on this subject dealt with factors that enhance development of atherosclerosis. This review deals with a new facet, that some individuals are less prone to develop atherosclerosis: (1) despite high cholesterol intake or (2) despite hypercholesterolemia with elevated low-density lipoprotein cholesterol (LDL-C) levels. The variability of response of plasma cholesterol to dietary intake was shown to be regulated by liver x receptor (LXR) that determines the rate of intestinal cholesterol absorption through the ATP-binding cassette (ABC) gene family. Other gene products, such as apolipoprotein-E (apo-E), scavenger receptor-B1 (SR-B1) and acyl coenzyme: cholesterol acyltransferase-2 (ACAT-2) affect cholesterol absorption also. The role of a genetic background for relative resistance to atherosclerosis is highlighted by subjects with familial hypercholesterolemia in whom high plasma cholesterol levels has not curtailed their expected life span. Studies in animals have shown that resistance to atherosclerosis in spite of hypercholesterolemia is affected by factors such as high-density lipoprotein (HDL) phospholipids that enhance reverse cholesterol transport, non-responsiveness to induction or lack of monocyte chemotactic protein-1 (MCP-1), C-C chemokine receptor 2 (CCR2), macrophage colony stimulating factor (MCSF), or vascular cell adhesion molecule-1 (VCAM-1). Since macrophages have been regarded as pro- or anti-atherogenic, evidence was collated that the high activity of scavenger receptors may contribute towards resistance to atherosclerosis if accompanied by adequate amounts of apo-E for cholesterol removal.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Murray C.J.
        • Lopez A.D.
        Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study.
        Lancet. 1997; 349: 1498-1505
        • Ahrens Jr., E.H.
        • Hirsch J.
        • Insull Jr., W.
        • Tsaltas T.T.
        • Blomstrand R.
        • Peterson M.L.
        The influence of dietary fats on serum-lipid levels in man.
        Lancet. 1957; 1: 943-953
        • Jacobs D.R.
        • Anderson J.T.
        • Hanna P.
        • Keys A.
        • Blackburn H.
        Variability in individual serum cholesterol response to change in diet.
        Arteriosclerosis. 1983; 3: 349-356
        • Katan M.B.
        • Beynen A.C.
        • de Vries J.H.M.
        • Nobels A.
        Existence of resistent hypo- and hyperresponders to dietary cholesterol in man.
        Am. J. Epidemiol. 1986; 123: 221-234
        • Beynen A.C.
        • Katan M.B.
        • van Zutphen L.F.M.
        Hypo- and hyperresponders: individual differences in the response of serum cholesterol concentration to changes in diet.
        Adv. Lipid Res. 1987; 22: 115-171
        • Katan M.B.
        • Berns M.A.M.
        • Glatz J.F.C.
        • Knuiman J.T.
        • Nobels A.
        • de Vries J.H.M.
        Congruence of individual responsiveness to dietary cholesterol and to saturated fat in humans.
        J. Lipid Res. 1988; 29: 883-892
        • Denke M.A.
        • Grundy S.M.
        Individual responses to a cholesterol-lowering diet in 50 men with moderate hypercholesterolemia.
        Arch. Intern. Med. 1994; 154: 317-325
        • Schaefer E.J.
        • Lichtenstein A.H.
        • Lamon-Fava S.
        • Contois J.H.
        • Li Z.
        • Rasmussen H.
        • McNamara J.R.
        • Ordovas J.M.
        Efficacy of a National Cholesterol Education Program Step 2 diet in normolipidemic and hypercholesterolemic middle-aged and elderly men and women.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1079-1085
        • Gylling H.
        • Miettinen T.A.
        Cholesterol absorption and synthesis related to low density lipoprotein metabolism during varying cholesterol intake in men with different apoE phenotypes.
        J. Lipid Res. 1992; 33: 1361-1371
        • Lopez-Miranda J.
        • Ordovas J.M.
        • Mata P.
        • Lichtenstein A.H.
        • Clevidence B.
        • Judd J.T.
        • Schaefer E.J.
        Effect of apolipoprotein E phenotype on diet-induced lowering of plasma low density lipoprotein cholesterol.
        J. Lipid Res. 1994; 35: 1965-1975
        • Wilson P.W.
        • Schaefer E.J.
        • Larson M.G.
        • Ordovas J.M.
        Apolipoprotein E alleles and risk of coronary disease. A meta-analysis.
        Arterioscler. Thromb. Vasc. Biol. 1996; 16: 1250-1255
        • Lahoz C.
        • Schaefer E.J.
        • Cupples L.A.
        • Wilson P.W.
        • Levy D.
        • Osgood D.
        • Parpos S.
        • Pedro-Botet J.
        • Daly J.A.
        • Ordovas J.M.
        Apolipoprotein E genotype and cardiovascular disease in the Framingham Heart Study.
        Atherosclerosis. 2001; 154: 529-537
        • Mata P.
        • Ordovas J.M.
        • Lopez-Miranda J.
        • Lichtenstein A.H.
        • Clevidence B.
        • Judd J.T.
        • Schaefer E.J.
        ApoA-IV phenotype affects diet-induced plasma LDL cholesterol lowering.
        Arterioscler. Thromb. 1994; 14: 884-891
        • Ordovas J.M.
        • Schaefer E.J.
        Genetic determinants of plasma lipid response to dietary intervention: the role of the APOA1/C3/A4 gene cluster and the APOE gene.
        Br. J. Nutr. 2000; 83: S127-S136
        • Repa J.J.
        • Turley S.D.
        • Lobaccaro J.M.A.
        • Medina J.
        • Li L.
        • Lustig K.
        • Shan B.
        • Heyman R.A.
        • Dietschy J.M.
        • Mangelsdorf D.J.
        Regulation of absorption and ABC1 mediated efflux of cholesterol by RXR heterodimers.
        Science. 2000; 289: 1524-1529
        • Wade D.P.
        • Owen J.S.
        Regulation of the cholesterol efflux gene, ABCA1.
        Lancet. 2001; 357: 161-163
        • Brooks-Wilson A.
        • Marcil M.
        • Cle S.M.
        • Zhang L.H.
        • Romp K.
        • van Dam M.
        • Yu L.
        • Brewer C.
        • Collins J.A.
        • Molhuizen H.O.
        • Loubser O.
        • Ouelette B.F.
        • Fichter K.
        • Ashbourne-Excoffon K.J.
        • Sensen C.W.
        • Scherer S.
        • Mott S.
        • Denis M.
        • Martindale D.
        • Frohlich J.
        • Morgan K.
        • Koop B.
        • Plimstone S.
        • Kastelein J.J.
        • Hayden M.R.
        Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency.
        Nat. Genet. 1999; 22: 336-345
        • Bodzioch M.
        • Orso E.
        • Klucken J.
        • Langmann T.
        • Bottcher A.
        • Diederich W.
        • Drobnik W.
        • Barlage S.
        • Buchler C.
        • Porsch-Ozcurumez M.
        • Kaminski W.E.
        • Hahmann H.W.
        • Oette K.
        • Rothe G.
        • Aslanidis C.
        • Lackner K.J.
        • Schmitz G.
        The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease.
        Nat. Genet. 1999; 22: 347-351
        • Rust S.
        • Rosier M.
        • Funke H.
        • Real J.
        • Amoura Z.
        • Piette J.C.
        • Deleuze J.F.
        • Brewer H.B.
        • Duverger N.
        • Denefle P.
        • Assmann G.
        Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1.
        Nat. Genet. 1999; 22: 352-355
        • Schwartz K.
        • Lawn R.M.
        • Wade D.P.
        ABC1 gene expression and apoA-I-mediated cholesterol efflux are regulated by LXR.
        Biochem. Biophys. Res. Commun. 2000; 274: 794-802
        • Berge K.E.
        • Tian H.
        • Graf G.A.
        • Yu L.
        • Grishin N.V.
        • Schultz J.
        • Kwiterovich P.
        • Shan B.
        • Barnes R.
        • Hobbs H.H.
        Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters.
        Science. 2000; 290: 1771-1775
        • Bortnick A.E.
        • Rothblat G.H.
        • Stoudt G.
        • Hoppe K.L.
        • Royer L.J.
        • McNeish J.
        • Francone O.L.
        The correlation of ATP-binding cassette 1 mRNA levels with cholesterol efflux from various cell lines.
        J. Biol. Chem. 2000; 275: 28634-28640
        • Lawn R.M.
        • Wade D.P.
        • Couse T.L.
        • Wilcox J.N.
        Localization of human ATP-binding cassette transporter 1 (ABC1) in normal and atherosclerotic tissues.
        Arterioscler. Thromb. Vasc. Biol. 2001; 21: 378-385
        • Kern Jr., F.
        Normal plasma cholesterol in an 88-year-old man who eats 25 eggs a day: mechanism of adaptation.
        N. Engl. J. Med. 1991; 324: 896-899
        • Bhattacharyya A.K.
        • Eggen D.A.
        Relationships between dietary cholesterol, cholesterol absorption, cholesterol synthesis, and plasma cholesterol in rhesus monkeys.
        Atherosclerosis. 1987; 67: 33-39
        • Overturf M.L.
        • Smith S.A.
        • Hewett-Emmett D.
        • Loose-Mitchell D.S.
        • Soma M.R.
        • Gotto Jr., A.M.
        • Morrisett J.D.
        Development and partial metabolic characterization of a dietary cholesterol-resistant colony of rabbits.
        J. Lipid Res. 1989; 30: 263-273
        • Overturf M.L.
        • Smith S.A.
        • Gotto Jr., A.M.
        • Morrisett J.D.
        • Tewson T.
        • Poorman J.
        • Loose-Mitchell D.S.
        Dietary cholesterol absorption, and sterol and bile acid excretion in hypercholesterolemia-resistant white rabbits.
        J. Lipid Res. 1990; 31: 2019-2027
        • Beynen A.C.
        • Meijer G.W.
        • Lemmens A.G.
        • Glatz J.F.C.
        • Versluis A.
        • Katan M.B.
        • Van Zutphen F.M.
        Sterol balance and cholesterol absorption in inbred strains of rabbits hypo- or hyperresponsive to dietary cholesterol.
        Atherosclerosis. 1989; 77: 151-157
        • St Clair R.W.
        • Wood L.L.
        • Clarkson T.B.
        Effect of sucrose polyester on plasma lipids and cholesterol absorption in African green monkeys with variable hypercholesterolemic response to dietary cholesterol.
        Metabolism. 1981; 30: 176-183
        • Turley S.D.
        • Spady D.K.
        • Dietschy J.M.
        Identification of a metabolic difference accounting for the hyper- and hyporesponder phenotypes of cynomolgus monkey.
        J. Lipid Res. 1997; 38: 1598-1611
        • Kirk E.A.
        • Moe G.L.
        • Caldwell M.T.
        • Lernmark J.A.
        • Wilson D.L.
        • LeBoeuf R.C.
        Hyper- and hypo-responsiveness to dietary fat and cholesterol among inbred mice: searching for level and variability genes.
        J. Lipid Res. 1995; 36: 1522-1532
        • Sehayek E.
        • Ono J.G.
        • Shefer S.
        • Nguyen L.B.
        • Wang N.
        • Batta A.K.
        • Salen G.
        • Smith J.D.
        • Tall A.R.
        • Breslow J.L.
        Biliary cholesterol excretion: a novel mechanism that regulates dietary cholesterol absorption.
        Proc. Natl. Acad. Sci. USA. 1998; 95: 10194-10199
        • Mardones P.
        • Quinones V.
        • Amigo L.
        • Moreno M.
        • Miquel J.F.
        • Schwarz M.
        • Miettinen H.E.
        • Trigatti B.
        • Krieger M.
        • VanPatten S.
        • Cohen D.E.
        • Rigotti A.
        Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice.
        J. Lipid Res. 2001; 42: 170-180
        • Sehayek E.
        • Shefer S.
        • Nguyen L.B.
        • Ono J.G.
        • Merkel M.
        • Breslow J.L.
        Apolipoprotein E regulates dietary cholesterol absorption and biliary cholesterol excretion: studies in C57BL/6 apolipoprotein E knockout mice.
        Proc. Natl. Acad. Sci. USA. 2000; 97: 3433-3437
        • Jolley C.D.
        • Dietschy J.M.
        • Turley S.D.
        Genetic differences in cholesterol absorption in 129/Sv and C57BL/6 mice: effect on cholesterol responsiveness.
        Am. J. Physiol. 1999; 276: G1117-G1124
        • Mouzeyan A.
        • Choi J.
        • Allayee H.
        • Wang X.
        • Sinsheimer J.
        • Phan J.
        • Castellani L.W.
        • Reue K.
        • Lusis A.J.
        • Davis R.C.
        A locus conferring resistance to diet-induced hypercholesterolemia and atherosclerosis on mouse chromosome 2.
        J. Lipid Res. 2000; 41: 573-582
        • Buhman K.K.
        • Accad M.
        • Novak S.
        • Choi R.S.
        • Wong J.S.
        • Hamilton R.L.
        • Turley S.
        • Farese Jr., R.V.
        Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice.
        Nat. Med. 2000; 6: 1341-1347
        • Goldstein J.L.
        • Hobbs H.H.
        • Brown M.S.
        Familial hypercholesterolemia.
        in: Scriber C.R. Beaudet A.L. Sly W.S. Vale D. Lipids. The Metabolic & Molecular Bases of Inherited Disease. 11. 2001: 2863-2913 (Chapter 120, Part 12)
        • Jensen J.
        • Blankenhorn D.H.
        • Kornerup V.
        Coronary disease in familial hypercholesterolemia.
        Circulation. 1967; 36: 77
        • Slack J.
        Risks of ischaemic heart disease in familial hyperlipo-proteinaemic states.
        Lancet. 1969; 2: 1380
        • Heiberg A.
        The risk of atherosclerotic vascular disease in subjects with xanthomatosis.
        Acta Med. Scand. 1975; 198: 249
        • Stone N.J.
        • Levy R.I.
        • Fredrickson D.S.
        • Verter J.
        Coronary artery disease in 116 kindreds with famlial type II hyperlipoproteinemia.
        Circulation. 1974; 49: 476
        • Beaumont V.
        • Jacotot B.
        • Beaumont J.-L.
        Ischaemic disease in men and women with familial hypercholesterolaemia and xanthomatosis. A comparative study of genetic and environmental factors in 274 heterozygous cases.
        Atherosclerosis. 1976; 24: 441
        • Piper J.
        • Orrild L.
        Essential familial hypercholesterolemia and xanthomatosis.
        Am. J. Med. 1956; 7: 34-46
        • Williams R.R.
        • Hasstedt S.J.
        • Wilson D.E.
        • Ash K.O.
        • Yanowitz F.F.
        • Reiber G.F.E.
        • Kuida H.
        Evidence that men with familial hypercholesterolemia can avoid early coronary death. An analysis of 77 gene carriers in four Utah pedigrees.
        J. Am. Med. Assoc. 1986; 255: 219-224
        • Heiberg A.
        The risk of atherosclerotic vascular disease in subjects with xanthomatosis.
        Acta. Med. Scand. 1975; 198: 249-261
        • Kotze M.J.
        • Davis H.J.
        • Bissbort S.
        • Langenhoven E.
        • Brusnicky J.
        • Oosthuizen C.J.J.
        Intrafamilial variability in the clinical expression of familial hypercholesterolemia: importance of risk factor determination for genetic counselling.
        Clin. Genet. 1993; 43: 295-299
        • Murano S.
        • Shinomiya M.
        • Shirai K.
        • Saito Y.
        • Yoshida S.
        Characteristic features of long-living patients with familial hypercholesterolemia in Japan.
        J. Am. Geriatr. Soc. 1993; 41: 253-257
        • Seftel H.C.
        • Baker S.G.
        • Sandler M.P.
        • Forman M.B.
        • Joffe B.I.
        • Mendelsohn D.
        • Jenkins T.
        • Mieny C.J.
        A host of hypercholesterolaemic homozygotes in South Africa.
        Br. Med. J. 1980; 281: 633-636
        • Khachadurian A.K.
        • Uthman S.M.
        Experiences with the homozygous cases of familial hypercholesterolemia. A report of 52 patients.
        Nutr. Metabol. 1973; 15: 132-140
        • Tybjaerg-Hansen A.
        • Gallagher J.
        • Vincent J.
        • Houlston R.
        • Talmud P.
        • Dunning A.M.
        • Seed M.
        • Hamsten A.
        • Humphries S.E.
        • Myant N.B.
        Familial defective apolipoprotein B-100: detection in the United Kingdom and Scandinavia, and clinical characteristics of ten cases.
        Atherosclerosis. 1990; 80: 235-242
        • Schuster H.
        • Rauh G.
        • Kormann B.
        • Hepp T.
        • Humphries S.
        • Keller C.
        • Wolfram G.
        • Zollner N.
        Familial defective apolipoprotein B-100: comparison with familial hypercholesterolemia in 18 cases detected in Munich.
        Arteriosclerosis. 1990; 10: 577-581
        • Myant N.B.
        • Gallagher J.J.
        • Knight B.L.
        • McCarthy S.N.
        • Frostegard J.
        • Nilsson J.
        • Hamsten A.
        • Talmud P.
        • Humphries S.E.
        Clinical signs of familial hypercholesterolemia in patients with familial defective apolipoprotein B-100 and normal low density lipoprotein receptor function.
        Arterioscler. Thromb. 1991; 11: 691-703
        • Hobbs H.H.
        • Leitersdorf E.
        • Leffert C.C.
        • Crywe D.R.
        • Brown M.S.
        • Goldstein J.L.
        Evidence for a dominant gene that suppresses hypercholesterolemia in a family with defective low density lipoprotein receptors.
        J. Clin. Invest. 1989; 84: 656-664
        • Sass C.
        • Giroux L.-M.
        • Ma Y.
        • Roy M.
        • Lavigne J.
        • Lussier-Cacan S.
        • Davignon J.
        • Minnich A.
        Evidence for a cholesterol-lowering gene in a French-Canadian kindred with familial hypercholesterolemia.
        Hum. Genet. 1995; 96: 21-26
        • Genest Jr., J.J.
        • Martin-Munley S.
        • McNamara J.R.
        • Ordovas J.M.
        • Jenner J.
        • Myers R.H.
        • Silberman S.R.
        • Wilson P.W.
        • Salem D.N.
        • Schaefer E.J.
        Familial lipoprotein disorders in patients with premature coronary artery disease.
        Circulation. 1992; 85: 2025-2033
        • Paigen B.
        • Ishida B.Y.
        • Verstuyft J.
        • Winters R.B.
        • Albee D.
        Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice.
        Arteriosclerosis. 1990; 10: 316-323
        • Paigen B.
        • Morrow A.
        • Holmes P.A.
        • Mitchell D.
        • Williams R.A.
        Quantitative assessment of atherosclerotic lesions in mice.
        Atherosclerosis. 1987; 68: 231-240
        • Paigen B.
        Genetics of responsiveness to high-fat and high-cholesterol diets in the mouse.
        Am. J. Clin. Nutr. 1995; 62: 458S-462S
        • LeBoeuf R.C.
        • Doolittle M.H.
        • Montcalm A.
        • Martin D.C.
        • Reue K.
        • Lusis A.J.
        Phenotypic characterization of the Ath-1 gene controlling high density lipoprotein levels and susceptibility to atherosclerosis.
        J. Lipid Res. 1990; 31: 91-101
        • Machleder D.
        • Ivandic B.
        • Welch C.
        • Castellani L.
        • Reue K.
        • Lusis A.J.
        Complex genetic control of HDL levels in mice in response to an atherogenic diet: coordinate regulation of HDL levels and bile acid metabolism.
        J. Clin. Invest. 1997; 99: 1406-1419
        • Friedman G.
        • Ben-Yehuda A.
        • Dabach Y.
        • Hollander G.
        • Babaey S.
        • Ben-Naim M.
        • Stein O.
        • Stein Y.
        Macrophage cholesterol metabolism, apolipoprotein E, and scavenger receptor AI/II mRNA in atherosclerosis-susceptible and -resistant mice.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2459-2464
        • Eisenberg S.
        High density lipoprotein metabolism.
        J. Lipid Res. 1984; 25: 1017-1058
        • Stein O.
        • Stein Y.
        Atheroprotective mechanisms of HDL.
        Atherosclerosis. 1999; 144: 285-301
        • Stein O.
        • Dabach Y.
        • Hollander G.
        • Ben-Naim M.
        • Halperin G.
        • Okon E.
        • Stein Y.
        Cholesterol efflux in vivo from a depot of cationized LDL injected into a thigh muscle of small rodents.
        Atherosclerosis. 1997; 133: 15-22
        • Stein O.
        • Dabach Y.
        • Hollander G.
        • Ben-Naim M.
        • Halperin G.
        • Stein Y.
        Effect of atherogenic diet on reverse cholesterol transport in vivo in atherosclerosis susceptible (C57BL/6) and resistant (C3H) mice.
        Atherosclerosis. 2001; 156: 307-313
        • Dueland S.
        • Drisko J.
        • Graf L.
        • Machleder D.
        • Lusis A.J.
        • Davis R.A.
        Effect of dietary cholesterol and taurocholate on cholesterol 7 alpha-hydroxylase and hepatic LDL receptors in inbred mice.
        J. Lipid Res. 1993; 34: 923-931
        • Liao F.
        • Andalibi A.
        • deBeer F.C.
        • Fogelman A.M.
        • Lusis A.J.
        Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice.
        J. Clin. Invest. 1993; 91: 2572-2579
        • Machleder D.
        • Ivandic B.
        • Welch C.
        • Castellani L.
        • Reue K.
        • Lusis A.J.
        Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism.
        J. Clin. Invest. 1997; 99: 1406-1419
        • Shi W.
        • Haberland M.E.
        • Jien M.L.
        • Shih D.M.
        • Lusis A.J.
        Endothelial response to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice.
        Circulation. 2000; 102: 75-81
        • Shi W.
        • Wang N.J.
        • Shih D.M.
        • Sun V.Z.
        • Wang X.
        • Lusis A.J.
        Determinants of atherosclerosis susceptibility in the C3H and C57BL/6 mouse model. Evidence for involvement of endothelial cells but not blood cells or cholesterol metabolism.
        Circ. Res. 2000; 86: 1078-1084
        • Rader D.J.
        • Pure E.
        Genetic susceptibility to atherosclerosis. Insights from mice.
        Circ. Res. 2000; 86: 1013-1015
        • Dansky H.M.
        • Charlton S.A.
        • Sikes J.L.
        • Heath S.C.
        • Rimantov R.
        • Levin L.F.
        • Shu P.
        • Moore K.J.
        • Breslow J.L.
        • Smith J.D.
        Genetic background determines the extent of atherosclerosis in ApoE-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 1999; 19: 1960-1968
        • von Eckardstein A.
        • Nofer J.R.
        • Assmann G.
        High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport.
        Arterioscler. Thromb. Vasc. Biol. 2001; 21: 13-27
        • Ericsson S.
        • Eriksson M.
        • Vitols S.
        • Einarsson K.
        • Berglund L.
        • Angelin B.
        Influence of age on the metabolism of plasma low density lipoproteins in healthy males.
        J. Clin. Invest. 1991; 87: 591-596
        • Mahley R.W.
        • Innerarity T.L.
        Lipoprotein receptors and cholesterol homeostasis.
        Biochim. Biophys. Acta. 1983; 737: 197-222
        • Araki A.
        • Ito H.
        • Urano S.
        • Iiyama M.
        • Shimada Y.
        Age-related changes in the metabolism of acetylated low-density lipoproteins by peritoneal macrophages from C57BL/6CrScl mice.
        J. Gerontol. 1994; 49: B104-B109
        • Friedman G.
        • Ben-Yehuda A.
        • Dabach Y.
        • Ben-Naim M.
        • Hollander G.
        • Retter O.
        • Friedlander Y.
        • Stein O.
        • Stein Y.
        Scavenger receptor activity and expression of apolipoprotein E mRNA in monocyte-derived macrophages of young and old healthy men.
        Atherosclerosis. 1997; 128: 67-73
        • Huang Z.S.
        • Wang C.H.
        • Yip P.K.
        • Yang C.Y.
        • Lee T.K.
        In hypercholesterolemia, lower peripheral monocyte count is unique among the major predictors of atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 1996; 16: 256-261
        • Thiery J.
        • Nebendahl K.
        • Rapp K.
        • Kluge R.
        • Teupser D.
        • Seidel D.
        Low atherosclerotic response of a strain of rabbits to diet-induced hypercholesterolemia.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1181-1188
        • Thiery J.
        • Teupser D.
        • Walli A.K.
        • Ivandic B.
        • Nebendahl K.
        • Stein O.
        • Stein Y.
        • Seidel D.
        Study of causes underlying the low atherosclerotic response to dietary hypercholesterolemia in a selected strain of rabbits.
        Atherosclerosis. 1996; 121: 63-73
        • Teupser D.
        • Thiery J.
        • Haas U.
        • Stein O.
        • Stein Y.
        • Seidel D.
        Expression of vascular cell adhesion molecule-1 (VCAM-1) in the aortae of hypercholesterolemic rabbits with high (HAR) and low (LAR) atherosclerotic response.
        Atherosclerosis. 1997; 128: 157-164
        • Teupser D.
        • Stein O.
        • Burkhardt R.
        • Nebendahl K.
        • Stein Y.
        • Thiery J.
        Scavenger receptor activity is increased in macrophages from rabbits with low atherosclerosis response: studies in normocholesterolemic high and low atherosclerotic response rabbits.
        Arterioscler. Thromb. Vasc. Biol. 1998; 19: 1299-1305
        • Mazzone T.
        Scavenger receptors in atherosclerosis. New answers, new questions.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2506-2508
        • de Winther M.P.J.
        • Hofker M.H.
        Scavenging new insights into atherogenesis.
        J. Clin. Invest. 2000; 105: 1039-1041
        • Greaves D.R.
        • Gough P.J.
        • Gordon S.
        Recent progress in defining role of scavenger receptors in lipid transport, atherosclerosis and host defence.
        Curr. Opin. Lipidol. 1998; 9: 425-432
        • Babaev V.R.
        • Gleaves L.A.
        • Carter K.J.
        • Suzuki H.
        • Kodama T.
        • Fazio S.
        • Linton M.F.
        Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2593-2599
        • de Winther M.P.J.
        • Gijbels M.J.
        • van Dijk K.W.
        • van Gorp P.J.
        • Suzuki H.
        • Kodama T.
        • Frants R.R.
        • Havekes L.M.
        • Hofker M.H.
        Scavenger receptor deficiency leads to more complex atherosclerotic lesions in APOE3Leiden transgenic mice.
        Atherosclerosis. 1999; 144: 315-321
        • Van Eck M.
        • de Winther M.P.K.
        • Herijgers N.
        • Havekes L.M.
        • Hofker M.H.
        • Groot P.H.E.
        • van Berkel T.J.C.
        Effect of human scavenger receptor class A overexpression in bone marrow-derived cells on cholesterol levels and atherosclerosis in apoE-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2600-2606
        • Herijgers N.
        • de Winther M.P.J.
        • Van Eck M.
        • Havekes L.M.
        • Hofker M.H.
        • Hoogerbrugge P.M.
        • Van Berkel T.J.C.
        Effect of human scavenger receptor class A overexpression in bone marrow-derived cells on lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knockout mice.
        J. Lipid Res. 2000; 41: 1402-1409
        • Boullier A.
        • Gillotte K.L.
        • Horkko S.
        • Green S.R.
        • Friedman P.
        • Dennis E.A.
        • Witztum J.L.
        • Steinberg D.
        • Quehenberger O.
        The binding of oxidized low density lipoprotein to mouse CD36 is mediated by phospholipids that are associated with both the lipid and protein moieties.
        J. Biol. Chem. 2000; 275: 9163-9169
        • Watanabe K.
        • Toba K.
        • Ogawa Y.
        • Aizawa Y.
        • Tanabe N.
        • Miyajima S.
        • Kusano Y.
        • Nagatomo T.
        • Hirokawa Y.
        Different patterns of 1231-BMIPP myocardial accumulation in patients with type I and II CD36 deficiency.
        Kaku Igaku. 1997; 34: 1125-1130
        • Febbraio M.
        • Podrez E.A.
        • Smith J.D.
        • Hajjar D.P.
        • Hazen S.L.
        • Hoff H.F.
        • Sharma K.
        • Silverstein R.L.
        Targeted disruption of the class B scavenger receptor, CD36, protects against atherosclerotic lesion development in mice.
        J. Clin. Invest. 2000; 105: 1049-1056
        • Li A.C.
        • Brown K.K.
        • Silvestre M.J.
        • Willson T.M.
        • Palinski W.
        • Glass C.K.
        Peroxisone proliferator-activated receptor γ ligands inhibit development of atherosclerosis in LDL receptor-deficient mice.
        J. Clin. Invest. 2000; 106: 523-531
        • Collins A.R.
        • Meehan W.P.
        • Kintscher U.
        • Jackson S.
        • Wakino S.
        • Noh G.
        • Palinski W.
        • Hsueh W.A.
        • Law R.E.
        Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2001; 21: 365-371
        • Chinetti G.
        • Gbaguidi F.G.
        • Griglio S.
        • Mallat Z.
        • Antonucci M.
        • Poulain P.
        • Chapman J.
        • Fruchart J.-C.
        • Tedgui A.
        • Najib-Fruchart J.
        • Staels B.
        CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors.
        Circulation. 2000; 101: 2411-2417
        • Acton S.
        • Rigotti A.
        • Landschulz K.T.
        • Xu S.
        • Hobbs H.H.
        • Krieger M.
        Identification of scavenger receptor SR-BI as a high density lipoprotein receptor.
        Science. 1996; 271: 518-520
        • Ji Y.
        • Jian B.
        • Wang N.
        • Sun Y.
        • de la Llera Moya M.
        • Philips M.C.
        • Rothblat G.H.
        • Swaney J.B.
        • Tall A.R.
        Scavenger receptor B1 promotes high density lipoprotein-mediated cellular cholesterol efflux.
        J. Biol. Chem. 1997; 272: 20982-20985
        • Smith J.D.
        • Trogan E.
        • Ginsberg M.
        • Grigaux C.
        • Tian J.
        • Miyata M.
        Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E.
        Proc. Natl. Acad. Sci. USA. 1995; 92: 8264-8268
        • Rajavashisth T.
        • Qiao J.H.
        • Tripathi S.
        • Tripathi J.
        • Mishra N.
        • Hua M.
        • Wang X.P.
        • Loussararian A.
        • Clinton S.
        • Libby P.
        • Lusis A.
        Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor-deficient mice.
        J. Clin. Invest. 1998; 101: 2702-2710
        • Gu L.
        • Okada Y.
        • Clinton S.K.
        • Sukhova G.K.
        • Libby P.
        • Rollins B.J.
        Absence of monocyte chemoattractant protein-1 reduced atherosclerosis in low density receptor-deficient mice.
        Mol. Cell. 1998; 2: 275-281
        • Boring L.
        • Gosling J.
        • Cleary M.
        • Charo J.F.
        Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis.
        Nature. 1998; 394: 894-897
        • Gosling J.
        • Slaymaker S.
        • Gu L.
        • Tseng S.
        • Zlot C.H.
        • Young S.G.
        • Rollins B.J.
        • Charo I.F.
        MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B.
        J. Clin. Invest. 1999; 103: 773-778
        • Miki S.
        • Horikawa K.
        • Nishizumi H.
        • Suemura M.
        • Sato B.
        • Yamamoto M.
        • Takatsu K.
        • Yamamoto T.
        • Miki Y.
        Reduction of atherosclerosis despite hypercholesterolemia in lyn-deficient mice fed a high-fat diet.
        Genes Cells. 2001; 6: 37-42
        • Linton M.F.
        • Atkinson J.B.
        • Fazio S.
        Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation.
        Science. 1995; 267: 1034-1037
        • Boisvert W.A.
        • Spangenberg J.
        • Curtiss L.K.
        Treatment of severe hypercholesterolemia in apolipoprotein E-deficient mice by bone marrow transplantation.
        J. Clin. Invest. 1995; 96: 1118-1124
        • Van Eck M.
        • Herijgers N.
        • Yates J.
        • Pearce N.J.
        • Hoogerbrugge P.M.
        • Groot P.H.
        • Van Berkel T.J.
        Bone marrow transplantation in apolipoprotein E-deficient mice. Effect of ApoE gene dosage on serum lipid concentrations, (beta)VLDL catabolism, and atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 3117-3126
        • Bellosta S.
        • Mahley R.W.
        • Sanan D.A.
        • Murata J.
        • Newland D.L.
        • Taylor J.M.
        • Pitas R.E.
        Macrophage-specific expression of human apoprotein E reduces atherosclerosis in hypercholesterolemic apolipoprotein E-null mice.
        J. Clin. Invest. 1995; 96: 2170-2179
        • Tsukamoto K.
        • Tangirala R.K.
        • Chun S.
        • Usher D.
        • Pure E.
        • Rader D.J.
        Hepatic expression of apolipoprotein E inhibits progression of atherosclerosis without reducing cholesterol levels in LDL receptor-deficient mice.
        Mol. Ther. 2000; 1: 189-194
        • Yamada N.
        • Inoue I.
        • Kawamura M.
        • Harada K.
        • Watanabe Y.
        • Shimano H.
        • Gotoda T.
        • Shimada M.
        • Kohzaki K.
        • Tsukada T.
        • et al.
        Apolipoprotein E prevents the progression of atherosclerosis in Watanabe heritable rabbits.
        J. Clin. Invest. 1992; 89: 706-711
        • Thorngate F.E.
        • Rudel L.L.
        • Walzem R.L.
        • Williams D.L.
        Low levels of extrahepatic nonmacrophage apoE inhibit atherosclerosis without correcting hypercholesterolemia in apoE-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1939-1945
        • Nishina P.M.
        • Verstuyft J.
        • Paigen B.
        Synthetic low and high fat diets for the study of atherosclerosis in the mouse.
        J. Lipid Res. 1990; 31: 859-869