Microsomal triglyceride transfer protein: does insulin resistance play a role in the regulation of chylomicron assembly?


      We have previously demonstrated that diabetes is associated with an increase in intestinal microsomal triglyceride transfer protein (MTP) mRNA in both the rat and rabbit models. The present study was designed to investigate the relationship between MTP expression and chylomicron assembly in an insulin resistant non-diabetic animal model. Ten insulin resistant Zucker obese fa/fa rats and ten lean fa/− rats were examined at 8–10 weeks of age. The lymph duct was cannulated and lymph collected for 4 h. Lymph chylomicrons were isolated by ultracentrifugation and their composition determined. RNA was extracted from intestinal mucosa and from the liver. MTP mRNA was measured using the RNase protection assay. Blood sugar in the fatty rats was significantly higher (6.3±1.2 vs. 5.4±0.4 P<0.05) and plasma insulin was almost six times that of the lean rats (P<0.001). Plasma cholesterol and phospholipid but not triglyceride were significantly increased in the obese animals (P<0.01). Obese animals secreted significantly more lymph chylomicron apo B48 (0.05±0.02 vs. 0.02±0.01mg/h P<0.005), triglyceride (9.7±5.3 vs. 3.8±1.9 mg/h P<0.005) and phospholipid (1.5±0.7 vs. 0.4±0.3 mg/h P<0.001). The only difference in the chylomicron particle composition between the two groups was a significant increase in phospholipid (P<0.01). Intestinal MTP mRNA expression was significantly higher in the fatty compared to the lean rats (22.1±9.5 vs. 7.8±5.6 amol MTP mRNA/μg total RNA P<0.001) as was hepatic MTP mRNA expression (6.9±3.5 vs. 3.4±1.5 amol MTP mRNA/μg total RNA, P<0.01). Thus in this animal model of insulin resistance, increased MTP, which was associated with increased chylomicron particle number, may play a crucial role in the development of atherosclerosis.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Haffner S.M.
        • Lehto S.
        • Ronnemaa T.
        • Pyorala K.
        • Laakso M.
        Mortality from coronary heart disease in diabetic subjects with type 2 diabetes and in non diabetic subjects with and without prior myocardial infarction.
        N. Engl. J. Med. 1998; 339: 229-234
        • Despres J.P.
        • Lamaeche B.
        • Mauriege P.S.
        • Cantin B.
        • Dagenais G.R.
        • Moorjani S.
        • Lupien P.J.
        Hyperinsulinaemia as an independent risk factor for ischaemic heart disease.
        N. Engl. J. Med. 1996; 334: 952-957
        • Perseghin G.
        • Ghosh S.
        • Gerow K.
        • Shulman G.I.
        Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study.
        Diabetes. 1997; 46: 1001-1009
        • Curtin A.
        • Deegan P.
        • Owens D.
        • Collins P.
        • Johnson A.
        • Tomkin G.H.
        Elevated triglyceride-rich lipoproteins in diabetes: a study of apolipoprotein B48.
        Acta Diabetol. 1996; 33: 205-210
        • Curtin A.
        • Deegan P.
        • Owens D.
        • Collins P.
        • Johnson A.
        • Tomkin G.H.
        Alterations in apolipoprotein B48 in the post-prandial state.
        Diabetologia. 1994; 37: 1259-1262
        • Taggart C.
        • Gibney J.
        • Owens D.
        • Collins P.
        • Johnson A.
        • Tomkin G.H.
        The role of dietary cholesterol in the regulation of post-prandial apolipoprotein B48 levels in diabetes.
        Diabet. Med. 1997; 14: 1051-1058
        • Phillips C.
        • Murugasu G.
        • Owens D.
        • Collins P.
        • Johnson A.
        • Tomkin G.H.
        Improved metabolic control reduces the number of postprandial apolipoprotein B48-containing particles in type 2 diabetes.
        Atherosclerosis. 2000; 150: 283-291
        • Madigan C.
        • Ryan M.
        • Owens D
        • Collins P.
        • Johnson A.
        • Tomkin G.H.
        Dietary unsaturated fatty acids in type 2 diabetes: higher levels of atherogenic postprandial lipoproteins on a linoleic compared to an oleic acid-rich diet.
        Diabetes Care. 2000; 23: 1472-1477
        • Gylling H.
        • Miettinen T.A.
        Cholesterol absorption, synthesis and LDL metabolism in NIDDM.
        Diabetes Care. 1997; 20: 90-95
        • Duvillard L.
        • Pont F.
        • Florentin E.
        • Galland-Jos C.
        • Gambert P.
        • Verges B.
        Metabolic abnormalities of apolipoprotein B-containing lipoproteins in non-insulin-dependent diabetes: a stable isotope kinetic study.
        Eur. J. Clin. Invest. 2000; 30: 685-694
        • Malmstrom R.
        • Packard C.J.
        • Caslake M.
        • Bedford D.
        • Stewart P.
        • Yki-Jarvin H.
        • et al.
        Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM.
        Diabetologia. 1997; 40: 454-462
        • Battula S.B.
        • Fitzsimons O.
        • Moreno S.
        • Owens D.
        • Collins P.
        • Johnson A.
        • et al.
        Post-prandial apolipoprotein B48 and B100-containing lipoproteins in type 2 diabetes: do statins have a specific effect on triglyceride metabolism?.
        Metabolism. 2000; 49: 1-7
        • Levy E.
        • Shafrir E.
        • Ziv E.
        • Bar-On H.
        Composition and removal and metabolic fate of chylomicrons derived from diabetic rats.
        Biochim. Biophys. Acta. 1985; 834: 376-385
        • Gleeson A.
        • Owens D.
        • Collins P.
        • Johnson A.
        • Tomkin G.H.
        The relationship between cholesterol absorption and intestinal cholesterol synthesis in the diabetic rat model.
        Int. J. Exp. Diab. Res. 2000; 1: 203-210
        • Martins I.J.
        • Sainsbury A.J.
        • Mamo J.C.
        • Redgrave T.G.
        Lipid and apoprotein B48 transport in mesenteric lymph and the effect of hyperphagia on clearance of chylomicron-like emulsions in insulin-deficient rats.
        Diabetologia. 1994; 37: 238-246
        • Kugiyama K.
        • Doi H.
        • Takazoe K.
        • Kawano H.
        • Soejima H.
        • Mizuno Y.
        • et al.
        Remnant lipoprotein levels in fasting serum predict coronary events in patients with coronary artery disease.
        Circulation. 1999; 99: 2858-2860
        • Mero N.
        • Malmstrom R.
        • Steiner G.
        • Taskinen M-R
        • Syvänne M.
        Postprandial metabolism of apolipoprotein B48 and B100-containing particles and type 2 diabetes: relationship to angiographically verified severity of coronary heart disease.
        Atherosclerosis. 2000; 150: 167-177
        • Karpe F.
        • Steiner G.
        • Uffelman K.
        • Olivercrona T.
        • Hamsten A.
        Postprandial lipoproteins and the progression of coronary atherosclerosis.
        Atherosclerosis. 1994; 106: 83-97
        • Gianturco S.H.
        • Ramprasad M.P.
        • Song R.
        • Li R.
        • Brown M.L.
        • Bradley W.A.
        Apolipoprotein B48 or its apolipoprotein B100 equivalent mediates the binding of triglyceride-rich lipoproteins to their unique human monocyte–macrophage receptor.
        Arterioscler. Thromb. Vasc. Biol. 1998; 18: 968-976
        • Brown M.L.
        • Ramprasad P.M.
        • Umeda P.K.
        • Tanaka A.
        • Kobayashi Y.
        • Watanabe T.
        • et al.
        A macrophage receptor for apo B48: cloning, expression and atherosclerosis.
        Proc. Natl. Acad. Sci. USA. 2000; 97: 7488-7493
        • White D.A.
        • Bennett A.J.
        • Billett M.A.
        • Salter A.M.
        The assembly of triacylglycerol-rich lipoproteins: an essential role for the microsomal triacylglycerol transfer protein.
        Br. J. Nutr. 1998; 80: 219-229
        • Hussain M.H.
        A proposed model for assembly of chylomicrons.
        Atherosclerosis. 2000; 148: 1-15
        • Hagen D.L.
        • Kienzle B.
        • Jamil H.
        • Hariharan N.
        Transcriptional regulation of human and hamster microsomal triglyceride transfer protein genes.
        J. Biol. Chem. 1994; 269: 28737-28744
        • Lin M.C.
        • Gordon D.
        • Wetterau J.R.
        Microsomal triglyceride transfer protein (MTP) regulation in HepG2 cells: insulin negatively regulates MTP gene expression.
        J. Lipid Res. 1995; 36: 1073-1081
        • Bennett A.J.
        • Bruce J.S.
        • Salter A.M.
        • White D.A.
        • Billett M.A.
        Hepatic microsomal triglyceride transfer protein messenger RNA concentrations are increased by dietary cholesterol in hamsters.
        FEBS Lett. 1996; 394: 247-250
        • Gleeson A.
        • Anderton K.
        • Owens D.
        • Bennett A.
        • Collins P.
        • Johnson A.
        • et al.
        The Role of microsomal triglyceride transfer protein and dietary cholesterol in chylomicron production in diabetes.
        Diabetologia. 1999; 42: 944-948
        • Tomkin G.H.
        • Phillips C.
        • Anderton K.
        • Bennett A.
        • Madigan C.
        • Collins P.
        Increased microsomal triglyceride transfer protein (MTP) expression in the intestine but not the liver of diabetic rabbits.
        Diabetes Res. Clin. Pract. 2000; 50: S379
        • Phillips M.S.
        • Liu Q.
        • Hammond H.A.
        • Duggan V.
        • Hey P.J.
        • Caskey C.T.
        • et al.
        Leptin receptor missense mutation in the fatty Zucker rat.
        Nat. Genet. 1996; 13: 18-23
        • Young N.L.
        • Lopez D.R.
        • McNamara D.J.
        Contributions of absorbed dietary cholesterol and cholesterol synthesised in small intestine to hypercholesterolaemia in diabetic rats.
        Diabetes. 1988; 37: 1151-1156
        • Feingold K.R.
        • Wiley M.H.
        • MacRea G.
        • Moser A.H.
        • Lear S.R.
        • Siperstein M.D.
        The effect of diabetes mellitus on sterol synthesis in the intact rat.
        Diabetes. 1982; 31: 388-395
        • Gylling H.
        • Miettinen T.A.
        Cholesterol absorption, synthesis and LDL metabolism in NIDDM.
        Diabetes Care. 1997; 20: 90-95
        • Martins I.J.
        • Mortimer B-C
        • Miller J.
        • Redgrave T.G.
        Effects of particle size and number on the plasma clearance of chylomicrons and remnants.
        J. Lipid Res. 1996; 37: 2696-2705
        • Pullinger C.R.
        • North J.D.
        • Teng B.B.
        • Rifici V.A.
        • Ronhild A.E.
        • deBrito J.
        The apoprotein B gene is constitutively expressed in HepG2 cells: regulation and secretion by oleic acid, albumin, and insulin and measurement of mRNA half life.
        J. Lipid Res. 1989; 30: 1065-1077
        • Yao Z.
        • Tran K.
        • McLeod R.S.
        Intracellular degradation of newly synthesised apolipoprotein B.
        J. Lipid Res. 1997; 38: 1937-1953
        • Tietge U.J.F.
        • Bakillah A.
        • Maugeais C.
        • Tsukamoto K.
        • Hussain M.
        • Radar D.J.
        Hepatic overexpression of microsomal triglyceride transfer protein (MPT) results in increased in vivo secretion of VLDL triglycerides and apo B.
        J. Lipid Res. 1999; 40: 2134-2139
        • Leung G.K.
        • Veniant M.M.
        • Kim S.K.
        • Zlot H.
        • Raabe M.
        • Bjorkegren J.
        • et al.
        A deficiency of microsomal triglyceride transfer protein reduces apo B secretion.
        J. Biol. Chem. 2000; 275: 7515-7520
        • Bennett A.J.
        • Billett M.A.
        • Salter A.M.
        • White D.A.
        Regulation of hamster hepatic microsomal triglyceride transfer protein mRNA levels by dietary fats.
        Biochim. Biophys. Res. Commun. 1995; 212: 473-478
        • Taghibiglou C.
        • Carpentier A.
        • Van Iderstine S.C.
        • Chen B.
        • Rudy D.
        • Aiton A.
        • et al.
        Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance.
        J. Biol. Chem. 2000; 275: 8416-8425