Elevated C-reactive protein and homocysteine values: cardiovascular risk factors in hypothyroidism? A cross-sectional and a double-blind, placebo-controlled trial


      Hypothyroidism is associated with premature atherosclerosis and cardiovascular disease. Recently, total homocysteine (tHcy) and C-reactive protein (CRP) emerged as additional cardiovascular risk factors. We first investigated CRP and tHcy in different severities of primary hypothyroidism and in a second study we evaluated the effect of l-thyroxine treatment in patients with subclinical hypothyroidism (SCH) in a double-blind, placebo-controlled trial. One hundred and twenty-four hypothyroid patients (63 with subclinical, 61 with overt hypothyroidism, OH) and 40 euthyroid controls were evaluated. CRP was measured using a latex-based high sensitivity immunoassay; tHcy was determined by a fluorescence polarization immunoassay. tHcy values were significantly elevated in OH (P=0.01). In SCH tHcy levels were not augmented as compared to controls. CRP values were significantly increased in OH (P=0.016) and SCH (P=0.022) as compared to controls. In a univariate analysis tHcy correlated significantly with fT4, vitamin B12, folic acid and creatinine levels. In multiple regression analysis only fT4 (β=0.33) had a significant effect on tHcy. CRP did not correlate with thyroid hormones. In SCH, L-T4 replacement had no significant effect on either tHcy or CRP levels. This is the first paper to show that CRP values increase with progressive thyroid failure and may count as an additional risk factor for the development of coronary heart disease in hypothyroid patients. In contrast to overt disease, only CRP, but not tHcy values, are affected in SCH, yet without significant improvement after l-thyroxine therapy.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Breslow J.L.
        Cardiovascular disease burden increases, NIH funding decreases.
        Nat. Med. 1997; 3: 600-601
        • Graham I.M.
        • Daly L.E.
        • Refsum H.M.
        • Robinson K.
        • Brattstrom L.E.
        • Ueland P.M.
        • et al.
        Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project.
        JAMA. 1997; 277: 1775-1781
        • Stampfer M.J.
        • Malinow M.R.
        • Willett W.C.
        • Newcomer L.M.
        • Upson B.
        • Ullmann D.
        • et al.
        A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians.
        JAMA. 1992; 268: 877-881
        • Perry I.J.
        • Refsum H.
        • Morris R.W.
        • Ebrahim S.B.
        • Ueland P.M.
        • Shaper A.G.
        Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men.
        Lancet. 1995; 346: 1395-1398
        • Nygard O.
        • Nordrehaug J.E.
        • Refsum H.
        • Ueland P.M.
        • Farstad M.
        • Vollset S.E.
        Plasma homocysteine levels and mortality in patients with coronary artery disease.
        N. Engl. J. Med. 1997; 337: 230-236
        • Nygard O.
        • Refsum H.
        • Ueland P.M.
        • Vollset S.E.
        Major lifestyle determinants of plasma total homocysteine distribution: the Hordaland Homocysteine Study.
        Am. J. Clin. Nutr. 1998; 67: 263-270
        • Selhub J.
        • Jacques P.F.
        • Wilson P.W.
        • Rush D.
        • Rosenberg I.H.
        Vitamin status and intake as primary determinants of homocysteinemia in an elderly population.
        JAMA. 1993; 270: 2693-2698
        • Hoffer L.J.
        • Robitaille L.
        • Elian K.M.
        • Bank I.
        • Hongsprabhas P.
        • Mamer O.A.
        Plasma reduced homocysteine concentrations are increased in end-stage renal disease.
        Kidney Int. 2001; 59: 372-377
        • Bostom A.
        • Kronenberg F.
        • Gohh R.
        • Schwenger V.
        • Kuen E.
        • Kraatz G.
        • et al.
        Chronic renal transplantation: a model for the hyperhomocysteinemia of renal insufficiency.
        Atherosclerosis. 2001; 156: 227-230
        • Hussein W.I.
        • Green R.
        • Jacobsen D.W.
        • Faiman C.
        Normalization of hyperhomocysteinemia with l-thyroxine in hypothyroidism.
        Ann. Intern. Med. 1999; 131: 348-351
        • Lien E.A.
        • Nedrebo B.G.
        • Varhaug J.E.
        • Nygard O.
        • Aakvaag A.
        • Ueland P.M.
        Plasma total homocysteine levels during short-term iatrogenic hypothyroidism.
        J. Clin. Endocrinol. Metab. 2000; 85: 1049-1053
        • Ridker P.M.
        • Cushman M.
        • Stampfer M.J.
        • Tracy R.P.
        • Hennekens C.H.
        Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men.
        N. Engl. J. Med. 1997; 336: 973-979
        • Ridker P.M.
        • Hennekens C.H.
        • Buring J.E.
        • Rifai N.
        C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women.
        N. Engl. J. Med. 2000; 342: 836-843
        • Hak A.E.
        • Pols H.A.
        • Visser T.J.
        • Drexhage H.A.
        • Hofman A.
        • Witteman J.C.
        Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study.
        Ann. Intern. Med. 2000; 132: 270-278
        • Tieche M.
        • Lupi G.A.
        • Gutzwiller F.
        • Grob P.J.
        • Studer H.
        • Burgi H.
        Borderline low thyroid function and thyroid autoimmunity. Risk factors for coronary heart disease?.
        Br. Heart J. 1981; 46: 202-206
        • Fowler P.B.
        • Ikram H.
        • Banim S.O.
        Serum-cholesterol, thyroid failure, and coronary-artery disease.
        Lancet. 1972; 1: 685
        • Vanhaelst L.
        • Neve P.
        • Chailly P.
        • Bastenie P.A.
        Coronary-artery disease in hypothyroidism. Observations in clinical myxoedema.
        Lancet. 1967; 2: 800-802
        • Steinberg A.D.
        Myxedema and coronary artery disease—a comparative autopsy study.
        Ann. Intern. Med. 1968; 68: 338-344
        • Bastenie P.A.
        • Vanhaelst L.
        • Bonnyns M.
        • Neve P.
        • Staquet M.
        Preclinical hypothyroidism: a risk factor for coronary heart-disease.
        Lancet. 1971; 1: 203-204
        • Meier C.
        • Staub J.J.
        • Roth C.B.
        • Guglielmetti M.
        • Kunz M.
        • Miserez A.R.
        • et al.
        TSH-controlled l-thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel Thyroid Study).
        J. Clin. Endocrinol. Metab. 2001; 86: 4860-4866
        • Muller B.
        • Tsakiris D.A.
        • Roth C.B.
        • Guglielmetti M.
        • Staub J.J.
        • Marbet G.A.
        Haemostatic profile in hypothyroidism as potential risk factor for vascular or thrombotic disease.
        Eur. J. Clin. Invest. 2001; 31: 131-137
        • Muller B.
        • Zulewski H.
        • Huber P.
        • Ratcliffe J.G.
        • Staub J.J.
        Impaired action of thyroid hormone associated with smoking in women with hypothyroidism.
        N. Engl. J. Med. 1995; 333: 964-969
        • Staub J.J.
        • Althaus B.U.
        • Engler H.
        • Ryff A.S.
        • Trabucco P.
        • Marquardt K.
        • et al.
        Spectrum of subclinical and overt hypothyroidism: effect on thyrotropin, prolactin, and thyroid reserve, and metabolic impact on peripheral target tissues.
        Am. J. Med. 1992; 92: 631-642
        • Zulewski H.
        • Muller B.
        • Exer P.
        • Miserez A.R.
        • Staub J.J.
        Estimation of tissue hypothyroidism by a new clinical score: evaluation of patients with various grades of hypothyroidism and controls.
        J. Clin. Endocrinol. Metab. 1997; 82: 771-776
        • Morris M.S.
        • Bostom A.G.
        • Jacques P.F.
        • Selhub J.
        • Rosenberg I.H.
        Hyperhomocysteinemia and hypercholesterolemia associated with hypothyroidism in the third US National Health and Nutrition Examination Survey.
        Atherosclerosis. 2001; 155: 195-200
        • Diekman M.J.
        • van der Put N.M.
        • Blom H.J.
        • Tijssen J.G.
        • Wiersinga W.M.
        Determinants of changes in plasma homocysteine in hyperthyroidism and hypothyroidism.
        Clin. Endocrinol. (Oxf). 2001; 54: 197-204
        • Rasmussen K.
        • Moller J.
        • Lyngbak M.
        • Pedersen A.M.
        • Dybkjaer L.
        Age- and gender-specific reference intervals for total homocysteine and methylmalonic acid in plasma before and after vitamin supplementation.
        Clin. Chem. 1996; 42: 630-636
        • Hankey G.J.
        • Eikelboom J.W.
        Homocysteine and vascular disease.
        Lancet. 1999; 354: 407-413
        • Schnyder G.
        • Roffi M.
        • Pin R.
        • Flammer Y.
        • Lange H.
        • Eberli F.R.
        Decreased rate of coronary restenosis after lowering of plasma homocysteine levels.
        N. Engl. J. Med. 2001; 345: 1593-1600
        • Walsh B.W.
        • Paul S.
        • Wild R.A.
        • Dean R.A.
        • Tracy R.P.
        • Cox D.A.
        • et al.
        The effects of hormone replacement therapy and raloxifene on C-reactive protein and homocysteine in healthy postmenopausal women: a randomized, controlled trial.
        J. Clin. Endocrinol. Metab. 2000; 85: 214-218
        • Hak A.E.
        • Bak A.A.
        • Lindemans J.
        • Planellas J.
        • Coelingh Bennink H.
        • Hofman A.
        • et al.
        The effect of hormone replacement therapy on serum homocysteine levels in perimenopausal women: a randomized controlled trial.
        Atherosclerosis. 2001; 158: 437-443
        • Nedrebo B.G.
        • Nygard O.
        • Ueland P.M.
        • Lien E.A.
        Plasma total homocysteine in hyper- and hypothyroid patients before and during 12 months of treatment.
        Clin. Chem. 2001; 47: 1738-1741
        • Catargi B.
        • Parrot-Roulaud F.
        • Cochet C.
        • Ducassou D.
        • Roger P.
        • Tabarin A.
        Homocysteine, hypothyroidism, and effect of thyroid hormone replacement.
        Thyroid. 1999; 9: 1163-1166
        • Mourier A.
        • Gautier J.F.
        • De Kerviler E.
        • Bigard A.X.
        • Villette J.M.
        • Garnier J.P.
        • et al.
        Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM. Effects of branched-chain amino acid supplements.
        Diabetes Care. 1997; 20: 385-391
        • Kuller L.H.
        • Tracy R.P.
        • Shaten J.
        • Meilahn E.N.
        Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial.
        Am. J. Epidemiol. 1996; 144: 537-547
        • Pepys M.B.
        C-reactive protein fifty years on.
        Lancet. 1981; 1: 653-657