Apo A-I promoter polymorphism influences basal HDL-cholesterol and its response to pravastatin therapy


      Statins decrease cardiovascular morbidity and mortality, essentially, by reducing LDL-cholesterol levels and, additionally, by increasing HDL-cholesterol concentrations. Environmental and genetic factors are known to affect LDL-C response to statins but less is known regarding HDL-C. We have evaluated the lipid and lipoprotein response to 20 mg/day of pravastatin for 16 weeks in relation to the G/A polymorphism in the promoter region of the apo A-I gene in 397 hypercholesterolaemic subjects followed-up on an out-patient basis. In the study population, 61.7% were homozygous for the G allele and 36% were heterozygous. The A allele carriers had an HDL-C 6.5% higher than the G allele homozygotes (P=0.021 in univariate analysis; P=0.009 in multivariate analysis). However, on segregation by gender and smoking status the effect was significant only in non-smoking males. The A allele carriers did not increase their HDL-C concentrations after treatment (−0.3, 95%CI −3.3 to 2.7%) while G allele homozygotes had a 4.9% increase (95%CI 2.5–7.3%). Differences in the response between both groups were significant before (P=0.008) and after adjustment for confounding variables such as age and baseline HDL-C concentration (P=0.046). We conclude that the G/A polymorphism of the apo A-I promoter region affects not only baseline HDL-C concentrations but also its response to pravastatin treatment.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gordon T.
        • Castelli W.P.
        • Hjortland M.C.
        • Kannel W.B.
        • Dawber T.R.
        High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study.
        Am. J. Med. 1977; 62: 707-714
        • Genest Jr, J.J.
        • Martin-Munley S.S.
        • McNamara J.R.
        • et al.
        Familial lipoprotein disorders in patients with premature coronary artery disease.
        Circulation. 1992; 85: 2025-2033
        • Tall A.R.
        • Breslow J.L.
        Plasma high-density lipoproteins and atherogenesis.
        in: Fuster V. Ross R. Topol E.J. Atherosclerosis and coronary artery disease. Lippincott-Raven, Philadelphia1996: 105-128
        • Wang J.
        • Burnett J.R.
        • Near S.
        • et al.
        Common and rare ABCA1 variants affecting plasma HDL cholesterol.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1983-1989
        • Ordovas J.M.
        • Cupples L.A.
        • Corella D.
        • et al.
        Association of cholesteryl ester transfer protein–TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1323-1329
        • Couture P.
        • Otvos J.D.
        • Cupples L.A.
        • et al.
        Association of the C-514T polymorphism in the hepatic lipase gene with variations in lipoprotein subclass profiles: the Framingham Offspring Study.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 815-822
        • Jeenah M.
        • Kessling A.
        • Miller N.
        • Humphries S.
        G to A substitution in the promoter region of the apolipoprotein AI gene is associated with elevated serum apolipoprotein AI and high density lipoprotein cholesterol concentrations.
        Mol. Biol. Med. 1990; 7: 233-241
        • Juo S.H.
        • Wyszynski D.F.
        • Beaty T.H.
        • Huang H.Y.
        • Bailey-Wilson J.E.
        Mild association between the A/G polymorphism in the promoter of the apolipoprotein A-I gene and apolipoprotein A-I levels: a meta-analysis.
        Am. J. Med. Genet. 1999; 82: 235-241
        • Lopez-Miranda J.
        • Ordovas J.M.
        • Espino A.
        • et al.
        Influence of mutation in human apolipoprotein A-1 gene promoter on plasma LDL cholesterol response to dietary fat.
        Lancet. 1994; 343: 1246-1249
        • Watts G.F.
        • Burke V.
        Lipid-lowering trials in the primary and secondary prevention of coronary heart disease: new evidence, implications and outstanding issues.
        Curr. Opin. Lipidol. 1996; 7: 341-355
        • Knopp R.H.
        Drug treatment of lipid disorders.
        New Engl. J. Med. 1999; 341: 498-511
        • Jones P.
        • Kafonek S.
        • Laurora I.
        • Hunninghake D.
        Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES study).
        Am. J. Cardiol. 1998; 81: 582-587
        • Miserez A.R.
        • Rossi F.A.
        • Keller U.
        Prediction of the therapeutic response to simvastatin by pretreatment lipid concentrations in 2082 subjects.
        Eur. J. Clin. Pharmacol. 1994; 46: 107-114
        • Narita Y.
        • Kitazoe Y.
        • Kurihara Y.
        • et al.
        Increase or decrease of HDL-cholesterol concentrations during pravastatin treatment depending on the pre-treatment HDL cholesterol levels.
        Eur. J. Clin. Pharmacol. 1997; 52: 461-463
        • Ordovas J.M.
        • Lopez-Miranda J.
        • Perez-Jimenez F.
        • et al.
        Effect of apolipoprotein E and A-IV phenotypes on the low density lipoprotein response to HMG CoA reductase inhibitor therapy.
        Atherosclerosis. 1995; 113: 157-166
        • Couture P.
        • Brun L.D.
        • Szots F.
        • et al.
        Association of specific LDL receptor gene mutations with differential plasma lipoprotein response to simvastatin in young French Canadians with heterozygous familial hypercholesterolemia.
        Arterioscler. Thromb. Vasc. Biol. 1998; 18: 1007-1012
      1. Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II), J Am Med Assoc 1993;269:3015–23.

        • Mata P.
        • Lopez-Miranda J.
        • Pocovi M.
        • et al.
        Human apolipoprotein A-I gene promoter mutation influences plasma low density lipoprotein cholesterol response to dietary fat saturation.
        Atherosclerosis. 1998; 137: 367-376
        • Davis C.E.
        • Williams D.H.
        • Oganov R.G.
        • et al.
        Sex difference in high density lipoprotein cholesterol in six countries.
        Am. J. Epidemiol. 1996; 143: 1100-1106
        • Anderson A.J.
        • Sobocinski K.A.
        • Freedman D.S.
        • Barboriak J.J.
        • Rimm A.A.
        • Gruchow H.W.
        Body fat distribution, plasma lipids, and lipoproteins.
        Arteriosclerosis. 1988; 8: 88-94
        • Wilson P.W.
        • Anderson K.M.
        • Harris T.
        • Kannel W.B.
        • Castelli W.P.
        Determinants of change in total cholesterol and HDL-C with age: the Framingham Study.
        J. Gerontol. 1994; 49: M252-M257
        • Weijenberg M.P.
        • Feskens E.J.
        • Kromhout D.
        Age-related changes in total and high-density-lipoprotein cholesterol in elderly Dutch men.
        Am. J. Public Health. 1996; 86: 798-803
        • Abbott R.D.
        • Yano K.
        • Hakim A.A.
        • et al.
        Changes in total and high-density lipoprotein cholesterol over 10- and 20-year periods (the Honolulu Heart Program).
        Am. J. Cardiol. 1998; 82: 172-178
        • Pagani F.
        • Sidoli A.
        • Giudici G.A.
        • Barenghi L.
        • Vergani C.
        • Baralle F.E.
        Human apolipoprotein A-I gene promoter polymorphism: association with hyperalphalipoproteinemia.
        J. Lipid Res. 1990; 31: 1371-1377
        • Sigurdsson Jr, G.
        • Gudnason V.
        • Sigurdsson G.
        • Humphries S.E.
        Interaction between a polymorphism of the apo A-I promoter region and smoking determines plasma levels of HDL and apo A-I.
        Arterioscler. Thromb. Vasc. Biol. 1992; 12: 1017-1022
        • Minnich A.
        • DeLangavant G.
        • Lavigne J.
        • Roederer G.
        • Lussier-Cacan S.
        • Davignon J.
        G→A substitution at position −75 of the apolipoprotein A-I gene promoter. Evidence against a direct effect on HDL cholesterol levels.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1740-1745
        • Xu C.F.
        • Angelico F.
        • Del Ben M.
        • Humphries S.
        Role of genetic variation at the apo AI–CIII–AIV gene cluster in determining plasma apo AI levels in boys and girls.
        Genet. Epidemiol. 1993; 10: 113-122
        • Barre D.E.
        • Guerra R.
        • Verstraete R.
        • Wang Z.
        • Grundy S.M.
        • Cohen J.C.
        Genetic analysis of a polymorphism in the human apolipoprotein A-I gene promoter: effect on plasma HDL-cholesterol levels.
        J. Lipid Res. 1994; 35: 1292-1296
        • Civeira F.
        • Pocovi M.
        • Cenarro A.
        • Garces C.
        • Ordovas J.M.
        Adenine for guanine substitution −78 base pairs 5′ to the apolipoprotein (APO) A-I gene: relation with high density lipoprotein cholesterol and APO A-I concentrations.
        Clin. Genet. 1993; 44: 307-312
        • Talmud P.J.
        • Ye S.
        • Humphries S.E.
        Polymorphism in the promoter region of the apolipoprotein AI gene associated with differences in apolipoprotein AI levels: the European Atherosclerosis Research Study.
        Genet. Epidemiol. 1994; 11: 265-280
        • Saha N.
        • Tay J.S.
        • Low P.S.
        • Humphries S.E.
        Guanidine to adenine (G/A) substitution in the promoter region of the apolipoprotein AI gene is associated with elevated serum apolipoprotein AI levels in Chinese non-smokers.
        Genet. Epidemiol. 1994; 11: 255-264
        • Ordovas J.M.
        • Corella D.
        • Cupples L.A.
        • et al.
        Polyunsaturated fatty acids modulate the effects of the APOA1 G–A polymorphism on HDL-cholesterol concentrations in a sex-specific manner: the Framingham Study.
        Am. J. Clin. Nutr. 2002; 74: 38-46
        • Ordovas J.M.
        • Vargas C.
        • Santos A.
        The G/A promoter polymorphism at the apo A-1 gene locus predicts individual variability in fasting and postprandial responses to the HMG CoA reductase inhibitor Atorvastatin.
        Circulation. 1999; 100: I-239
        • Itoh T.
        • Matsumoto M.
        • Hougaku H.
        • et al.
        Effects of low-dose simvastatin therapy on serum lipid levels in patients with moderate hypercholesterolemia: a 12-month study. The Simvastatin Study Group.
        Clin. Ther. 1997; 19: 487-497
        • Wierzbicki A.S.
        • Lumb P.J.
        • Chik G.
        • Crook M.A.
        High-density lipoprotein cholesterol and triglyceride response with simvastatin versus atorvastatin in familial hypercholesterolemia.
        Am. J. Cardiol. 2000; 86: 547-549
        • Mikhailidis D.P.
        • Wierzbicki A.S.
        HDL-cholesterol and the treatment of coronary heart disease: contrasting effects of atorvastatin and simvastatin.
        Curr. Med. Res. Opin. 2000; 16: 139-146
        • Guerin M.
        • Dolphin P.J.
        • Talussot C.
        • Gardette J.
        • Berthezene F.
        • Chapman M.J.
        Pravastatin modulates cholesteryl ester transfer from HDL to apoB-containing lipoproteins and lipoprotein subspecies profile in familial hypercholesterolemia.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1359-1368
        • Lagrost L.
        • Athias A.
        • Lemort N.
        • et al.
        Plasma lipoprotein distribution and lipid transfer activities in patients with type IIb hyperlipidemia treated with simvastatin.
        Atherosclerosis. 1999; 143: 415-425
        • Guerin M.
        • Lassel T.S.
        • Le Goff W.
        • Farnier M.
        • Chapman M.J.
        Action of atorvastatin in combined hyperlipidemia: preferential reduction of cholesteryl ester transfer from HDL to VLDL1 particles.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 189-197
        • Angotti E.
        • Mele E.
        • Costanzo F.
        • Avvedimento E.V.
        A polymorphism (G–A transition) in the −78 position of the apolipoprotein A-I promoter increases transcription efficiency.
        J. Biol. Chem. 1994; 269: 17371-17374
        • Smith J.D.
        • Brinton E.A.
        • Breslow J.L.
        Polymorphism in the human apolipoprotein A-I gene promoter region. Association of the minor allele with decreased production rate in vivo and promoter activity in vitro.
        J. Clin. Invest. 1992; 89: 1796-1800
        • Danek G.M.
        • Valenti M.
        • Baralle F.E.
        • Romano M.
        The A/G polymorphism in the −78 position of the apolipoprotein A-I promoter does not have a direct effect on transcriptional efficiency.
        Biochim. Biophys. Acta. 1998; 1398: 67-74
        • Schaefer J.R.
        • Schweer H.
        • Ikewaki K.
        • et al.
        Metabolic basis of high density lipoproteins and apolipoprotein A-I increase by HMG-CoA reductase inhibition in healthy subjects and a patient with coronary artery disease.
        Atherosclerosis. 1999; 144: 177-184
        • Martin G.
        • Duez H.
        • Blanquart C.
        • et al.
        Statin-induced inhibition of the Rho-signaling pathway activates PPARalpha and induces HDL apoA-I.
        J. Clin. Invest. 2001; 107: 1423-1432
        • Lloyd-Jones D.M.
        • O'Donnell C.J.
        • D'Agostino R.B.
        • Massaro J.
        • Silbershatz H.
        • Wilson P.W.
        Applicability of cholesterol-lowering primary prevention trials to a general population: the Framingham Heart Study.
        Arch. Intern. Med. 2001; 161: 949-954