Fibrates in 2003: therapeutic action in atherogenic dyslipidaemia and future perspectives

  • M.John Chapman
    Tel.: +33-1-42-177878; fax: +33-1-45-828198.
    National Institute for Health and Medical Research (INSERM), Unit 551, “Dyslipoproteinemia and Atherosclerosis: Genetics, Metabolism and Therapy”, Pavillon Benjamim Delessert, Hôpital de la Pitié, 83 Bd de l'hôpital, 75651 Paris Cedex 13, France
    Search for articles by this author


      Objectives: To explore the therapeutic potential of fibrates to attenuate premature atherosclerosis and cardiovascular disease in the atherogenic dyslipidemias typical of Type II diabetes, Metabolic Syndrome, and the Type IIB (mixed) lipid phenotype; such dyslipidemias frequently feature peripheral insulinoresistance. Background: Recent epidemiological data reveal that a marked increase in the prevalence of Type II diabetes, obesity and the Metabolic Syndrome has occurred on a worldwide scale. Dyslipidemia is an integral component of the metabolic perturbations which characterise these disorders, and is intimately associated with premature atherosclerosis and elevated cardiovascular risk. The atherogenic dyslipidemias of Type II diabetes, the Metabolic Syndrome and mixed (IIB) hyperlipidemia feature moderate to marked elevation of triglyceride-rich lipoproteins, low HDL-C cholesterol levels, and a dense LDL phenotype; equally, they feature an inflammatory state. Fibrates, agonists of PPARα, act to modulate the expression of key genes of lipid transport and metabolism in organs such as the liver and adipose tissue; equally, they exert pleiotropic, anti-inflammatory effects downregulating expression of genes encoding acute phase proteins and inflammatory cytokines. By inducing elevation of HDL-C levels, reduction in triglyceride-rich lipoproteins and a shift in the dense LDL phenotype to receptor-active, buoyant LDL, and by diminishing the inflammatory state, fibrates act to attenuate the atherosclerotic burden in atherogenic dyslipidemia. Such actions translate into significant clinical benefit as demonstrated by the reduction in cardiovascular morbi-mortality observed in both primary and secondary intervention trials (VA-HIT, Helsinki Heart Study, SENDCAP, DAIS, BECAIT). Conclusions: Fibrate therapy represents a cost effective approach to the clinical management of a wide spectrum of atherogenic dyslipidemias involving low HDL-C and elevated TGRL levels, and which include Type II diabetes and the Metabolic Syndrome. Optimised clinical application of these lipid modulating, anti-inflammatory drugs in these disorders in the context of either monotherapy or in combination with low dose statin is, therefore, warranted.



      Apo (apolipoprotein), C (cholesterol), CAD (coronary artery disease), CETP (cholesteryl ester transfer protein), HDL (high-density lipoproteins), IDL (intermediate density lipoprotein), LCAT (lecithin:cholesterol acyltransferase), LDL (low-density lipoproteins), PPARα (peroxisome proliferator-activated receptor-alpha), TGRL (triglyceride-rich lipoproteins), VLDL (very low-density lipoproteins)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Sacks F.M.
        The relative role of LDL-cholesterol and HDL-cholesterol in coronary artery disease: evidence from large-scale statin and fibrate trials.
        Am. J. Cardiol. 2001; 88: 14N-18N
        • Rubins H.B.
        • Robins S.J.
        • Collins D.
        • et al.
        Distribution of lipids in 8500 men with coronary artery disease.
        Am. J. Cardiol. 1995; 75: 1196-1201
        • Rubins H.B.
        • Robins S.J.
        • Collins D.
        • et al.
        Gemfibrozil for the secondary prevention of CAD in men with low levels of high-density lipoprotein cholesterol: Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group.
        New Engl. J. Med. 1999; 341: 410-418
        • Robins S.J.
        Targeting high-density lipoprotein cholesterol for therapy: lessons from Veterans Affairs High-Density Lipoprotein Intervention Trial.
        Am. J. Cardiol. 2001; 88: 19N-23N
        • Castelli W.P.
        • Garrison R.J.
        • Wilson P.W.
        • et al.
        Incidence of CAD and lipoprotein cholesterol levels: the Framingham Study.
        J. Am. Med. Assoc. 1986; 256: 2835-2838
        • Gordon D.J.
        • Probstfield J.L.
        • Garrison R.J.
        • et al.
        High density lipoprotein cholesterol and cardiovascular disease: four prospective American studies.
        Circulation. 1989; 79: 8-15
        • Wilson P.W.F.
        • Abbott R.D.
        • Castelli W.P.
        High density lipoprotein cholesterol and mortality. The Framingham Study.
        Arteriosclerosis. 1988; 8: 737-741
        • Barter P.J.
        • Clay M.A.
        • Rye K.A.
        High density lipoproteins: the anti-atherogenic fraction.
        in: Barter P.J. Rye K.A. Plasma lipids and their role in disease. Harwood Academic Publisher, 1999: 85-108
        • Chapman M.J.
        Atherogenicity of low-density lipoproteins: mechanisms.
        in: Barter P.J. Rye K.A. Plasma lipids and their role in disease. Harwood Academic Publisher, 1999: 69-84
        • Genest Jr, J.
        • Cohn J.S.
        Epidemiological evidence linking plasma lipoprotein disorders to atherosclerosis and other diseases.
        in: Barter P.J. Rye K.A. Plasma lipids and their role in disease. Harwood Academic Publisher, 1999: 46-68
        • Genest Jr, J.
        • Martin-Munley S.S.
        • McNamara J.R.
        • et al.
        Familial lipoprotein disorders in patients with premature coronary artery disease.
        Circulation. 1992; 85: 2025-2033
        • Haffner S.
        • Stern M.P.
        • Rewers M.
        Diabetes and atherosclerosis: epidemiological considerations.
        in: Draznin B. Eckel R.H. Diabetes and atherosclerosis. Elsevier, Amsterdam1993: 229-254
        • Stamler J.
        • Vaccaro O.
        • Neaton J.D.
        • Wentworth D.
        • Multiple Risk Factor Intervention Trial Research Group
        Diabetes, other risk factors and 12-year cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial.
        Diabetes Care. 1993; 16: 434-444
        • Austin M.A.
        Plasma triglyceride and coronary artery disease.
        Arterioscler. Thromb. 1991; 11: 2-14
        • Betteridge D.J.
        Diabetic dyslipidemia: implications for vascular risk.
        in: Betteridge D.J. Lipids current prospectives. Martin Dunitz, London1996: 135-158
        • Guerin M.
        • Le Goff W.
        • Lassel T.
        • Van Tol A.
        • Steiner G.
        • Chapman J.
        Proatherogenic role of elevated cholesteryl ester transfer from HDL to VLDL1 and dense LDL in type 2 diabetes: impact of the degree of triglyceridemia.
        Arterioscler. Thromb. Vasc. Biol. 2001; 21: 282-288
        • Assmann G.
        • Schulte H.
        The Prospective Cardiovascular Munster (PROCAM) Study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to CAD.
        Am. Heart J. 1988; 116: 1713-1724
        • Seviour P.W.
        • Teal T.K.
        • Richmond W.
        • Elkeles R.S.
        Serum lipids, lipoproteins and macrovascular disease in non-insulin dependent diabetics: a possible new approach to prevention.
        Diabetes Med. 1988; 5: 166-171
      1. National Institutes of Health. Third report of the National Cholesterol Education Program Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). Bethesda, MD: National Institutes of Health, 2001, NIH Publication 01-3670.

        • Ford E.S.
        • Giles W.H.
        • Dietz W.H.
        Prevalence of the Metabolic Syndrome among US adults. Findings from the Third National Health and Nutrition Examination Survey.
        J. Am. Med. Assoc. 2002; 287: 356-359
        • Williams K.J.
        • Tabas I.
        The response to retention hypothesis of early atherogenesis.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 551-561
        • Alaupovic P.
        • Mack W.J.
        • Knight-Gibson C.
        • Hodis H.N.
        The role of triglyceride-rich lipoprotein families in the progression of atherosclerotic lesions as determined by sequential coronary angiography from a controlled clinical trial.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 715-722
        • Gianturco S.H.
        • Bradley W.A.
        Pathophysiology of triglyceride-rich lipoproteins in atherothrombosis: cellular aspects.
        Clin. Cardiol. 1999; 22: II7-II14
        • Rapp J.H.
        • Lespine A.
        • Hamilton R.L.
        • et al.
        Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque.
        Arterioscler. Thromb. 1994; 14: 1767-1774
        • Gronholdt M.L.M.
        Echolucency of computerised ultrasound images of carotid atherosclerotic plaques are associated with increased levels of triglyceride-rich lipoproteins as well as increased plaque lipid content.
        Circulation. 1998; 97: 34-40
        • Nordestgaard B.G.
        • Wooton R.
        • Lewis B.
        Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo: molecular size as a determinant of fractional loss from the intima-inner media.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 534-542
        • Milosavljevic D.
        • Griglio S.
        • Le Naour G.
        • Chapman M.J.
        Preferential reduction of VLDL-1 particle number by Fenofibrate in type IIB hyperlipidemia: consequences for uptake by human monocyte-derived macrophages.
        Atherosclerosis. 2001; 155: 251-260
        • Packard C.J.
        • Shepherd J.
        Lipoprotein heterogeneity and apolipoprotein B metabolism.
        Arterioscler. Thromb. Vasc. Biol. 1977; 17: 3542-3556
        • Krauss R.M.
        Heterogeneity of plasma low density lipoproteins and atherosclerosis risk.
        Curr. Opin. Lipidol. 1994; 5: 339-349
        • Chapman M.J.
        • Guerin M.
        • Bruckert E.
        Atherogenic, dense LDL pathophysiology and new therapeutic approaches.
        Eur. Heart J. 1998; 19: A24-A30
        • Brown M.S.
        • Goldstein J.L.
        A receptor mediated pathway for cholesterol homeostasis.
        Science. 1986; 232: 34-47
        • Anber V.
        • Millar J.S.
        • McConnell M.
        • Shepherd J.
        • Packard C.J.
        Interaction of very-low-density, intermediate-density and low-density lipoproteins with human arterial wall proteoglycans.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 2507-2514
        • Young S.G.
        • Parthasarathy S.
        Why are low density lipoproteins atherogenic.
        West. J. Med. 1994; 160: 153-164
        • Griffin B.A.
        • Freeman D.J.
        • Tait G.W.
        • et al.
        Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small dense LDL to CAD risk.
        Atherosclerosis. 1994; 106: 741-753
        • Lamarche B.
        • Tchernof A.
        • Moorjani S.
        • et al.
        Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study.
        Circulation. 1997; 95: 69-75
        • Von Eckardstein A.
        • Nofer J.R.
        • Assmann G.
        High density lipoproteins and atherosclerosis. Role of cholesterol efflux and reverse cholesterol transport.
        Atheroscler. Thromb. Vasc. Biol. 2001; 21: 13-27
        • Lamarche B.
        • Rashid S.
        • Lewis G.F.
        HDL metabolism in hypertriglyceridemic states: an overview.
        Clin. Chim. Acta. 1999; 286: 145-161
        • Miller N.E.
        • Thelle D.S.
        • Forde O.H.
        • Mjos O.D.
        • The Tromso Heart Study
        High density lipoprotein and CAD: a prospective case-control study.
        Lancet. 1977; 1: 965-968
        • Goldbourt U.
        • Medalie J.H.
        High density lipoprotein cholesterol and incidence of CAD—the Israeli Ischaemic Heart Disease Study.
        Am. J. Epidemiol. 1979; 109: 296-308
        • Jacobs D.R.
        • Mebane I.L.
        • Bangdiwala S.I.
        • Criqui M.H.
        • Tyroler H.A.
        High density lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: the follow-up study of the Lipid Research Clinics Prevalence Study.
        Am. J. Epidemiol. 1990; 131: 32-47
        • Assmann G.
        • Schulte H.
        • Von Eckardstein A.
        • Huang Y.
        High density lipoprotein cholesterol as a predictor of CAD risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport.
        Atherosclerosis. 1996; 124: S11-S20
        • Mackness M.I.
        • Durrington P.N.
        • Mackness B.
        How high-density lipoprotein protects against the effects of lipid peroxidation.
        Curr. Opin. Lipidol. 2000; 11: 383-388
        • Lusis E.J.
        Nature. 2000; 407: 233-241
        • Charo I.F.
        Monocyte–endothelial cell interactions.
        Curr. Opin. Lipidol. 1992; 3: 335-343
        • Fleisher L.N.
        • Tall A.R.
        • Witte L.D.
        • Muller R.W.
        • Cannon P.J.
        Stimulation of arterial endothelial cell prostacyclin synthesis by high density lipoproteins.
        J. Biol. Chem. 1982; 257: 6653-6655
        • Zeiher A.M.
        • Schachinger V.
        • Hohnloser S.H.
        Coronary atherosclerotic wall thickening and vascular reactivity in humans. Elevated high-density lipoprotein levels ameliorate abnormal vasoconstriction in early atherosclerosis.
        Circulation. 1994; 89: 2525-2532
        • Nofer J.R.
        • Walter M.
        • Kehrel B.
        • et al.
        HDL3-mediated inhibition of thrombin-induced platelet aggregation and fibrinogen binding occurs via decreased production of phosphoinositide-derived second messenger 1,2-diacylglycerol and inositol 1,4,5-tris-phosphate.
        Arterioscler. Thromb. Vasc. Biol. 1998; 18: 861-869
        • Lerch P.G.
        • Spycher M.O.
        • Doran J.E.
        Reconstituted high density lipoprotein (rHDL) modulates platelet activity in vitro and ex vivo.
        Thromb. Haemost. 1998; 80: 316-320
        • Levine D.M.
        • Parker T.S.
        • Donnelly T.M.
        • Walsh A.
        • Rubin A.L.
        In vivo protection against endotoxin by high-density lipoprotein.
        Proc. Natl. Acad. Sci. USA. 1993; 90: 12040-12044
        • Von Eckardstein A.
        • Nofer J.R.
        • Assmann G.
        Prevention of CAD by raising high-density lipoprotein cholesterol.
        Curr. Opin. Lipidol. 2000; 11: 627-637
        • Schonfeld G.
        The effects of fibrates on lipoprotein and hemostatic coronary risk factors.
        Atherosclerosis. 1994; 111: 161-174
        • Gotto A.M.
        Low high-density lipoprotein cholesterol as a risk factor in CAD. A Working Group Report.
        Circulation. 2001; 103: 2213-2218
        • Adkins J.C.
        • Faulds D.
        Micronised fenofibrate. A review of its pharmacodynamic properties and clinical efficacy in the management of dyslipidemia.
        Drugs. 1997; 54: 615-633
        • Kirschgassler K.U.
        • Schmitz H.
        • Bach G.
        Effectiveness and tolerability of 12 week treatment with micronised fenofibrate 200 mg in a drug-monitoring programme involving 9884 patients with dyslipidemia.
        Clin. Drug Invest. 1998; 15: 197-204
        • Shepherd J.
        • Caslake M.J.
        • Lorimer A.R.
        • Vallance B.D.
        • Packard C.J.
        Fenofibrate reduces LDL catabolism in hypertriglyceridemic subjects.
        Arteriosclerosis. 1985; 5: 162-168
        • Guerin M.
        • Bruckert E.
        • Dolphin P.J.
        • Turpin G.
        • Chapman M.J.
        Fenofibrate reduces plasma cholesteryl ester transfer from HDL to VLDL and normalises the atherogenic dense LDL profile in combined hyperlipidemia.
        Arterioscler. Thromb. Vasc. Biol. 1996; 16: 763-772
        • Oro L.
        • Carlsson L.A.
        • Olsson A.
        • Poole P.H.
        Long term effect of ciprofibrate in patients with primary hyperlipidemia.
        Curr. Ther. Res. 1992; 51: 229-243
        • Bruckert E.
        • Dejager S.
        • Chapman M.J.
        Ciprofibrate therapy normalises the atherogenic low-density lipoprotein subspecies profile in combined hyperlipidemia.
        Atherosclerosis. 1993; 100: 91-102
        • Gaw A.
        • Packard C.J.
        • Caslake M.J.
        • et al.
        Effects of ciprofibrate on LDL metabolism in man.
        Atherosclerosis. 1994; 108: 137-148
        • Koutopoulos A.G.
        • Athyros V.G.
        • Papageorgiou A.A.
        • Hatzikoustandinou H.A.
        • Mayroudi M.C.
        • Boudoulas H.
        Effects of simvastatin and ciprofibrate alone and in combination on lipid profile, plasma fibrinogen and LDL particle structure and distribution in patients with familial combined hyperlipidemia and coronary artery disease.
        Coronary Artery Dis. 1996; 7: 843-850
        • Turpin G.
        • Bruckert E.
        Efficacy and safety of ciprofibrate in hyperlipoproteinaemias.
        Atherosclerosis. 1996; 124: S83-S87
        • Frick N.N.
        • Elo O.
        • Haapa K.
        • et al.
        Helsinki Heart Study: primary prevention trial with Gemfibrozil in middle-aged men with hyperlipidemia.
        New Engl. J. Med. 1987; 317: 1237-1245
        • BIP Study Group
        Secondary prevention by raising HDL-C and reducing triglycerides in patients with coronary artery disease. The Bezafibrate Infarction Prevention (BIP) Study.
        Circulation. 2000; 102: 21-27
        • Elkeles R.S.
        • Diamond J.R.
        • Poulter G.
        • et al.
        • The SENDCAP Study Group
        Cardiovascular outcome in type 2 diabetes. A double-blind placebo-controlled study of bezafibrate: the St Mary's, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study.
        Diabetes Care. 1998; 21: 641-648
        • Poulter N.
        The impact of micronised fenofibrate on lipid subfractions and on reaching HDL target levels in 7098 patients with dyslipidemia.
        Br. J. Cardiol. 1999; 6: 682-685
        • Diabetes Atherosclerosis Intervention Study Investigators
        Effect of fenofibrate on progression of coronary artery disease in Type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study.
        Lancet. 2001; 357: 905-910
        • Feher M.D.
        • Caslake M.
        • Foxton J.
        • Cox A.
        • Packard C.J.
        Atherogenic lipoprotein phenotype in Type 2 diabetes: reversal with micronised fenofibrate.
        Diabetes Metab. Res. Rev. 1999; 15: 395-399
        • Caslake M.J.
        • Packard C.J.
        • Gaw A.
        • et al.
        Fenofibrate and low density lipoprotein metabolic heterogeneity in hypercholesterolemia.
        Arterioscler. Thromb. 1993; 13: 702-711
        • Durrington P.N.
        • Mackness M.I.
        • Bhatnagar D.
        • et al.
        Effects of two different fibric derivatives on lipoproteins, cholesteryl ester transfer, fibrinogen, plasminogen activator inhibitor and paraoxonase activity in Type IIb-hyperlipoproteinemia.
        Atherosclerosis. 1998; 138: 217-225
        • Staels B.
        • Dallongeville J.
        • Auwerx J.
        • et al.
        Mechanism of action of fibrates on lipid and lipoprotein metabolism.
        Circulation. 1998; 98: 2088-2093
        • Cohn J.S.
        Postprandial lipid metabolism.
        Curr. Opin. Lipidol. 1994; 54: 185-190
        • Karpe F.
        • Steiner G.
        • Uffelman K.
        • et al.
        Postprandial lipoproteins and progression of coronary atherosclerosis.
        Atherosclerosis. 1993; 106: 83-97
        • Evans M.
        • Anderson R.A.
        • Graham J.
        • et al.
        Ciprofibrate therapy improves endothelial function and reduces postprandial lipemia and oxidative stress in type 2 diabetes mellitus.
        Circulation. 2000; 101: 1773-1779
        • Simpson H.S.
        • Williamson C.M.
        • Olivecrona T.
        • et al.
        Postprandial lipemia, fenofibrate and coronary artery disease.
        Atherosclerosis. 1990; 85: 193-202
        • Kugiyama K.
        • Hideki D.
        • Takazoe K.
        • et al.
        Remnant lipoprotein levels in fasting serum predict coronary events in patients with coronary artery disease.
        Circulation. 1999; 99: 2858-2860
        • Evans M.
        • Khan N.
        • Rees A.
        Diabetic dyslipidemia and CAD: new perspectives.
        Curr. Opin. Lipidol. 1999; 10: 387-391
        • Schoonjans K.
        • Staels B.
        • Auwerx J.
        Role of the peroxisome proliferator activated receptor (PPAR) in mediating effects of fibrates and fatty acids on gene expression.
        J. Lipid Res. 1996; 37: 907-925
        • Barbier O.
        • Pineda Torra I.
        • Duguay Y.
        • et al.
        Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2002; 22: 717-726
        • Willson T.M.
        • Brown P.J.
        • Sternbach D.D.
        • Henke B.R.
        The PPARs: from receptors to drug discovery.
        J. Med. Chem. 2000; 43: 527-550
        • Devchand P.
        • Keller H.
        • Peters J.
        • Vazquez M.
        • Gonzalez F.
        • Wahli W.
        The PPARα-leucotriene B4 pathway to inflammation control.
        Nature. 1996; 384: 39-43
        • Staels B.
        • Koenig W.
        • Habib A.
        • et al.
        Activation of human aortic smooth muscle cells is inhibited by PPARα but not by PPARγ activators.
        Nature. 1998; 393: 790-793
        • Marx M.
        • Sukhova G.K.
        • Collins T.
        • Libby P.
        • Plutzky J.
        PPARα activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells.
        Circulation. 1999; 99: 3125-3131
        • Hamsten A.
        The hemostatic system and CAD.
        Thromb. Res. 1993; 70: 1-38
        • Halle H.
        • Berg A.
        • Keul J.
        • Baumstark M.W.
        Association between serum fibrinogen concentrations and HDL and LDL subfraction phenotypes in healthy men.
        Arterioscler. Thromb. Vasc. Biol. 1996; 16: 144-148
        • Simpson I.A.
        • Lorimer A.R.
        • Walker I.D.
        • Davidson J.F.
        Effect of ciprofibrate on platelet aggregation and fibrinolysis in patients with hypercholesterolaemia.
        Thromb. Haemostat. 1989; 54: 442-444
        • Manninen V.
        • Tenkanen L.
        • Koskinen P.
        • et al.
        Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on CAD risk in the Helsinki Heart Study. Implications for treatment.
        Circulation. 1992; 85: 37-45
        • Ericsson C.G.
        • Hamsten A.
        • Nilsson J.
        • Grip L.
        • Svane B.
        • de Faire U.
        Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients.
        Lancet. 1996; 347: 849-853
        • Frick M.H.
        • Syvanne M.
        • Nieminen M.S.
        • et al.
        Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol.
        Circulation. 1997; 96: 2137-2143
        • Fruchart J.C.
        • Brewer H.B.
        • Leitersdorf E.
        Consensus for the use of fibrates in the treatment of dyslipoproteinemia and CAD.
        Am. J. Cardiol. 1998; 81: 912-917
        • Neimeijer S.D.J.M.
        • Dallinga-Thie G.M.
        • de Ruijter-Heijstek
        • et al.
        Effect of intensive lipid-lowering strategy on low-density lipoprotein particle size in patients with Type 2 diabetes mellitus.
        Atherosclerosis. 2001; 156: 209-216
        • Furberg C.D.
        • Pitt B.
        Withdrawal of cerivastatin from the world market.
        Curr. Control Trials Cardiovasc. Med. 2001; 2: 205-207
        • Zambon A.
        • Hokanson J.E.
        • Brown B.G.
        • Brunzell J.D.
        Evidence for a new pathophysiological mechanism for coronary artery disease regression—hepatic lipase mediated changes in LDL density.
        Circulation. 1999; 99: 1959-1964
      2. Reaven J, GM, Chen YD, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles, J Clin Invest 1993;92:141–6.

        • Guerre-Millo M.
        • Gervois P.
        • Raspé E.
        • et al.
        Peroxisome-proliferator-activated receptor α activators improve insulin sensitivity and reduce adiposity.
        J. Biol. Chem. 2000; 275: 16638-16642