Advertisement

Ischemic preconditioning: nearly two decades of research. A comprehensive review

      Abstract

      The phenomenon of “ischemic preconditioning” has been recognized for almost two decades. In experimental animals and humans, a brief period of ischemia has been shown to protect the heart from more prolonged episodes of ischemia, and reduce the degree of impaired ventricular function or subsequent damage. Ischemic preconditioning is classified into two distinct components: the classic early preconditioning and the delayed or late preconditioning, each with its own biologic mechanism of adaptation. A comprehensive understanding of these mechanisms and application to clinical scenarios has the promise of providing unique opportunities, particularly regarding the development of preconditioning mimetic agents. Administration of these mimetic drugs or procedures could potentially advance the use of preconditioning as a therapeutic tool and/or preventive factor for cardiovascular disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Murry C.E.
        • Jennings R.B.
        • Reimer K.A.
        Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.
        Circulation. 1986; 74: 1124-1136
        • Li G.C.
        • Vasquez J.A.
        • Gallagher K.P.
        • Lucchesi B.R.
        Myocardial protection with preconditioning.
        Circulation. 1990; 82: 609-619
        • Liu Y.
        • Downey J.M.
        Ischemic preconditioning protects against infarction in rat hearts.
        Am. J. Physiol. 1992; 263: H1107-H1112
        • Liu G.S.
        • Thornton J.
        • Van Winkle D.M.
        • et al.
        Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit hearts.
        Circulation. 1991; 84: 350-356
        • Miura T.
        • Adachi T.
        • Ogawa T.
        • et al.
        Myocardial infarct size-limiting effect of ischemic preconditioning: its natural decay and the effect of repetitive preconditioning.
        Cardiovasc. Pathol. 1992; 1: 147-154
        • Schott R.J.
        • Rohmann S.
        • Braun E.R.
        • et al.
        Ischemic preconditioning reduces infarct size in swine myocardium.
        Circ. Res. 1990; 66: 1133-1142
        • Vahlhaus C.
        • Schulz R.
        • Post H.
        • Rose J.
        • Heusch G.
        Prevention of ischemic preconditioning only by combined inhibition of protein kinase C and protein tyrosine kinase in pigs.
        J. Mol. Cell. Cardiol. 1998; 30: 197-209
        • Ikonomidis J.S.
        • Tumiati L.C.
        • Weisel R.D.
        • et al.
        Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischemia.
        Cardiovasc. Res. 1994; 28: 1285-1291
        • Walker D.M.
        • Walker J.M.
        • Pugsley W.B.
        • et al.
        Preconditioning in isolated superfused human muscle.
        J. Mol. Cell. Cardiol. 1995; 27: 1349-1357
        • Deutsch E.
        • Berger M.
        • Kussmaul W.G.
        • et al.
        Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic and metabolic features.
        Circulation. 1990; 82: 2044-2051
        • Cribier A.
        • Korsatz L.
        • Koning R.
        • et al.
        Improved myocardial ischemic response and enhanced collateral circulation with long repetetive coronary occlusion during angioplasty: a prospective study.
        J. Am. Coll. Cardiol. 1992; 20: 578-586
        • Yellon D.M.
        • Alkhulaif A.M.
        • Pugsley W.B.
        Preconditioning the human myocardium.
        Lancet. 1993; 342: 276-277
        • Cohen M.V.
        • Walsh R.S.
        • Goto M.
        • Downey J.M.
        Hypoxia preconditions rabbit myocardium via adenosine and catecholamine release.
        J. Mol. Cell. Cardiol. 1995; 27: 1527-1534
        • Mei D.A.
        • Gross G.J.
        Evidence for the involvement of the ATP-sensitive potassium channel in a novel model of hypoxic preconditioning in dogs.
        Cardiovasc. Res. 1995; 30: 222-230
        • Speechly-Dick M.E.
        • Grover G.J.
        • Yellon D.M.
        Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependant potassium channel? Studies of contractile function after simulated ischemia in an atrial in vitro model.
        Circ. Res. 1995; 77: 1030-1035
        • Armstrong S.
        • Ganote C.E.
        Adenosine receptor specificity in preconditioning of isolated rabbit cardiomyocytes: evidence of A3 receptor involvement.
        Cardiovasc. Res. 1994; 28: 1049-1056
        • Shiki K.
        • Hearse D.J.
        Preconditioning of ischemic myocardium: reperfusion-induced arrhythmias.
        Am. J. Physiol. 1987; 253: H1470-H1476
        • Murry C.E.
        • Richard V.J.
        • Reimer K.A.
        • Jennings R.B.
        Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode.
        Circ. Res. 1990; 66: 913-931
        • Cave A.C.
        • Hearse D.J.
        Ischemic preconditioning and contractile function: studies with normothermic and hypothermic global ischemia.
        J. Mol. Cell. Cardiol. 1992; 24: 1113-1123
        • Richard V.
        • Karffer N.
        • Tron C.
        • Thuillez C.
        Ischemic preconditioning protects against coronary endothelial dysfunction induced by ischemia and reperfusion.
        Circulation. 1994; 89: 1254-1261
        • Van winkle D.M.
        • Thornton J.D.
        • Downey D.M.
        • Downey J.M.
        The natural history of preconditioning: cardioprotection depends on duration of transient ischemia and time to subsequent ischemia.
        Coron. Artery Dis. 1991; 2: 613-619
        • Schulz R.
        • Post H.
        • Vahlhaus C.
        • Heusch G.
        Ischemic preconditioning in pigs: a graded phenomenon. Its relation to adenosine and bradykinin.
        Circulation. 1998; 98: 1022-1029
        • Matsubara S.
        • Minatoguchi S.
        • Matsuo H.
        • et al.
        Three minute, but not one minute. Ischemia and nicocrandil have a preconditioning effect in patients with coronary artery disease.
        J. Am. Coll. Cardiol. 2000; 35: 345-351
        • Jennings R.B.
        • Sebbag L.
        • Schwartz L.M.
        • et al.
        Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection.
        J. Mol. Cell. Cardiol. 2001; 33: 1571-1588
        • Kuzuya T.
        • Hoshida S.
        • Yamashita N.
        • et al.
        Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia.
        Circ. Res. 1993; 72: 1293-1299
        • Sandhu R.
        • Diaz R.J.
        • Mao G.D.
        • Wilson G.J.
        Ischemic preconditioning-difference in protection and susceptibility to blockade with single cycle versus multicycle transient ischemia.
        Circulation. 1997; 96: 984-995
        • Sack S.
        • Mohri M.
        • Arras M.
        • Schwarz E.R.
        • Schaper W.
        Ischemic preconditioning—time course of renewal in the pig.
        Cardiovasc. Res. 1993; 27: 551-555
        • Murry C.E.
        • Richard V.J.
        • Jennings R.B.
        • Reimer K.A.
        Myocardial protection is lost before contractile function recovers from ischemic preconditioning.
        Am. J. Physiol. Heart Circ. Physiol. 1991; 260: H796-H804
        • Burckhartt B.
        • Yang X.M.
        • Tsuchida A.
        • et al.
        Acadesine extends the window of protection afford by ischemic preconditioning in conscious rabbits.
        Cardiovasc. Res. 1995; 29: 653-657
        • Marber M.S.
        • Latchman D.S.
        • Walker J.M.
        • et al.
        Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction.
        Circulation. 1993; 88: 1264-1272
        • Turrens J.F.
        • Thornton J.
        • Barnard M.L.
        • Snyder S.
        • Liu G.
        • Downey J.M.
        Protectionfrom reperfusion injury by preconditioning hearts does not involve increased antooxidant defenses.
        Am. J. Physiol. 1992; 262: H585-H589
        • Thornton J.
        • Striplin S.
        • Liu G.S.
        • Swafford A.
        • Stanley A.W.H.
        • Van Winkle D.M.
        • Downey J.M.
        Inhibition of protein synthesis does not block myocardial protection afforded by preconditioning.
        Am. J. Physiol. 1990; 259: H1822-H1825
        • Jennings R.B.
        • Reimer K.A.
        • Steenbergen C.
        Effect of inhibition of the mitochondrial ATPase on net myocardial ATP in total ischemia.
        J. Mol. Cell. Cardiol. 1991; 23: 1383-1395
        • Kuzmin A.I.
        • Gourine A.V.
        • Molosh A.I.
        • Lakomkin V.L.
        • Vassort G.
        Effects of preconditioning on myocardial interstitial levels of ATP and its catabolites during regional ischemia and reperfusion in the rat.
        Basic Res. Cardiol. 2000; 95: 127-136
        • Lasley R.D.
        • Konyn P.J.
        • Hegge J.O.
        • Mentzer Jr, R.M.
        Effects of ischemic and adenosine preconditioning on interstitial fluid adenosine and myocardial infarct size.
        Am. J. Physiol. Heart Circ. Physiol. 1995; 38: H1460-H1466
        • Miura T.
        Adenosine and bradykinin: are they independent triggers of preconditioning.
        Basic Res. Cardiol. 1996; 91: 20-22
        • Mei D.A.
        • Nithipatikom K.
        • Lasley R.D.
        • Gross G.J.
        Myocardial preconditioning produced by ischemia, hypoxia, and a KATP channel opener: effects on interstitial adenosine in dogs.
        J. Mol. Cell. Cardiol. 1998; 30: 1225-1236
        • Thornton J.D.
        • Liu G.S.
        • Olsson R.A.
        • Downey J.M.
        Intravenous pretreatment with A1 selective adenosine analogues protects the heart against infarction.
        Circulation. 1992; 85: 659-665
        • Liu G.S.
        • Richards S.C.
        • Olsson R.A.
        • et al.
        Evidence that adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart.
        Cardiovasc. Res. 1994; 28: 1057-1061
        • Auchampach J.A.
        • Rizvi A.
        • Qiu Y.
        • et al.
        Selective activation of A3 adenosine receptors with N6 adenosine—5′-N-methyluronamide protects against myocardial stunning and infarction without hemodynamic changes in conscious rabbits.
        Circ. Res. 1997; 80: 800-809
        • McCully J.D.
        • Toyoda Y.
        • Uematsu M.
        • Stewart R.D.
        • Levitsky S.
        Adenosine enhanced ischemic preconditioning: adenosine receptor involvement during ischemia and reperfusion.
        Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H591-H602
        • Lasley R.D.
        • Rhee J.W.
        • Wylen D.G.L.V.
        • Mentzer J.R.M.
        Adenosine A1 receptor mediated protection of the globally ischemic isolated rat heart.
        J. Mol. Cell. Cardiol. 1990; 22: 39
        • Schultz J.E.J.
        • Rose E.
        • Yao Z.
        • et al.
        Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts.
        Am. J. Physiol. 1995; 268: H2157-H2161
        • Schwartz L.M.
        • Jennings R.B.
        • Reimer K.A.
        Premedication with the opioid analgesic butorphanol raises the threshold for ischemic preconditioning in dogs.
        Basic Res. Cardiol. 1997; 92: 106-114
        • Wang G.Y.
        • Wu S.
        • Pei J.M.
        • Yu X.C.
        • Wong T.M.
        K but not δ-opioid receptors mediate effects of ischemic preconditioning on both infarct and arrhthmia in rats.
        Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H384-H391
        • Aitchison K.A.
        • Baxter G.F.
        • Moneeb Awan M.
        • et al.
        Opposing effects on infarction of delta and kappa opioid receptors activation in the isolated rat heart: implications for ischemic preconditioning.
        Basic Res. Cardiol. 2000; 95: 1-10
        • Wall T.M.
        • Sheehy R.
        • Hartman J.C.
        Role of bradykinin in myocardial preconditioning.
        J. Pharmacol. Exp. Ther. 1994; 2: 681-689
        • Goto M.
        • Liu Y.
        • Yang X.M.
        • et al.
        Role of bradykinin in protection of ischemic preconditioning in rabbit hearts.
        Circ. Res. 1995; 77: 611-621
        • Li Y.
        • Kloner R.A.
        Cardioprotective effects of ischemic preconditioning are not mediated by prostanoids.
        Cardiovasc. Res. 1992; 26: 226-231
        • Liu G.S.
        • Stanley A.W.
        • Downey J.
        Cyclooxygenase products are not involved in protection against myocardial infarction afforded by preconditioning in rabbit. Cyclooxygenase pathway's involvement in preconditioning.
        Am. J. Cardiovasc. Pathol. 1992; 4: 157-164
        • Chen W.
        • Glasgow W.
        • Murphy E.
        • Steenbergen C.
        Lipoxygenase metabolism of arachidonic acid in ischemic preconditioning and PKC—induced protection in heart.
        Am. J. Physiol. Heart Circ. Physiol. 1999; 276: H2094-H2101
        • Bugee E.
        • Ytrehus K.
        Ischemic preconditioning is protein kinase C dependant but not through stimulation of alpha adrenergic or adenosine receptors in the isolated rat heart.
        Cardiovasc. Res. 1995; 29: 401-406
        • Tsuchida A.
        • Liu Y.
        • Liu G.S.
        • Liu M.
        • Cohen V.
        • Downey J.M.
        α1 Adrenergic agonists precondition rabbit ischemic myocardium independent of adenosine by direct activation of protein kinase C.
        Circ. Res. 1994; 75: 576-585
        • Moolman J.A.
        • Genade S.
        • Tromp E.
        • Lochner A.
        No evidence for mediation of ischemic preconditioning by alpha1-adrenergic signal transduction pathway or protein kinase C in isolated rat heart.
        Cardiovasc. Drugs Ther. 1996; 10: 125-136
        • Tanno M.
        • Tsuchida A.
        • Nozawa Y.
        • et al.
        Roles of tyrosine kinase and protein kinase C in infarct size limitation by repetetive ischemic preconditioning in the rat.
        J. Cardiovasc. Pharmacol. 2000; 35: 345-352
        • Liu Y.
        • Tsuchida A.
        • Cohen M.V.
        • Downey J.M.
        Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts.
        J. Mol. Cell. Cardiol. 1995; 27: 883-892
        • Wang P.
        • Gallagher K.P.
        • Downey J.M.
        • Cohen M.V.
        Pretreatment with endothelin-1 mimics ischemic preconditioning against infarction in isolated rabbit heart.
        J. Mol. Cell. Cardiol. 1996; 28: 579-588
        • Lochner A.
        • Marais E.
        • Genade S.
        • Moolman J.A.
        Nitric oxide: a trigger for classic preconditioning.
        Am. J. Physiol. Heart Circ. Physiol. 2000; 279: H2752-H2765
        • Nakano A.
        • Liu G.S.
        • Heusch G.
        • Downey J.M.
        • Cohen M.V.
        Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning.
        J. Mol. Cell. Cardiol. 2000; 32: 11159-11167
        • Post H.
        • Schulz R.
        • Behrends M.
        • et al.
        No involvement of endogenous nitric oxide in classical ischemic preconditioning in swine.
        J. Mol. Cell. Cardiol. 2000; 32: 725-733
        • Baines C.P.
        • Goto M.
        • Downey J.M.
        Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium.
        J. Mol. Cell. Cardiol. 1997; 29: 207-216
        • Das D.K.
        • Maulik N.
        • Sato M.
        • Ray P.S.
        Reactive oxygen species function as second messenger during ischemic preconditioning of heart.
        Mol. Cell. Biochem. 1999; 196: 59-67
        • Nishida M.
        • Maruyama Y.
        • Tanaka R.
        • et al.
        Gαi and Gαo are target proteins of reactive oxygen species.
        Nature. 2000; 408: 492-495
        • Bhatnagar A.
        • Srivastava A.
        • Szabo G.
        Oxidative stress alters specific membrane currents in isolated cardiac myocytes.
        Circ. Res. 1990; 67: 535-549
        • Tokube K.
        • Kiyosue T.
        • Arita M.
        Openings of cardiac KATP channel by oxygen free radicals produced by xanthine oxidase reaction.
        Am. J. Physiol. Heart Circ. Physiol. 1996; 271: H478-H489
        • Cain B.S.
        • Meldrum D.R.
        • Clevland Jr, J.C.
        • et al.
        Clinical l-type calcium channel blockade prevents ischemic preconditioning of human myocardium.
        J. Mol. Cell. Cardiol. 2000; 31: 2191-2197
        • Wallbridge D.R.
        • Schulz R.
        • Braun C.
        • Post H.
        • Heusch G.
        No attenuation of ischemic preconditioning by the calcium antagonist nisoldipine.
        J. Mol. Cell. Cardiol. 1996; 28: 1801-1810
        • Grover G.J.
        • Sleph P.G.
        • Dzwonczyk S.
        Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A1-receptors.
        Circulation. 1992; 86: 1310-1316
        • Auchampach J.A.
        • Grover C.J.
        • Gross G.J.
        Blockade of ischemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate.
        Cardiovasc. Res. 1992; 26: 1054-1062
        • Garlid kd
        • Paucek P.
        • Yarov-Yarovoy V.
        • et al.
        The mitochondrial katp channel as a receptor for potassium channel openers.
        J. Biol. Chem. 1996; 271: 8796-8799
        • Brady P.
        • Terzic A.
        The sulfonylurea controversy: more questions from the heart.
        J. Am. Coll. Cardiol. 1998; 31: 950-956
        • Garlid kd
        • Paucek P.
        • Yarov-Yarovoy V.
        • et al.
        Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection.
        Circ. Res. 1997; 81: 1072-1082
        • Pain T.
        • Yang X.M.
        • Critz S.D.
        • et al.
        Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals.
        Circ. Res. 2000; 87: 460-466
        • Haruna T.
        • Horie M.
        • Kouchi I.
        • et al.
        Coordinate interaction between ATP-sensitive K+ channel and Na+, K+-ATPase modulates ischemic preconditioning.
        Circulation. 1998; 98: 2905-2910
        • Hale S.L.
        • Kloner R.A.
        Effect of combined KATP channel activation and Na+/H+ exchange inhibition on infarct size in rabbits.
        Am. J. Physiol. 2000; 279: H2673-H2677
        • Sanada S.
        • Kitakaze M.
        • Asanuma H.
        • et al.
        Role of mitochondrial and sarcolemmal KATP channels in ischemic preconditioning of the canine heart.
        Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H256-H263
        • Downey J.M.
        • Cohen M.V.
        Mitochondrial KATP channel opening during index ischemia and following myocardial reperfusion in ischemic rat hearts.
        J. Mol. Cell. Cardiol. 2001; 33: 651-653
        • Ytrehus K.
        • Liu Y.
        • Downey J.M.
        Preconditioning protects ischemic rabbit heart by protein kinase C activation.
        Am. J. Physiol. Heart Circ. Physiol. 1994; 266: H1145-H1152
        • Ikonomidis J.S.
        • Shirai T.
        • Weisel R.D.
        • Derylo B.
        • Rao V.
        • Whiteside C.I.
        • Mickle D.A.G.
        • Li R.K.
        Preconditioning cultured human pediatric myocytes requires adenosine and protein kinase C.
        Am. J. Physiol. 1997; 272: H1220-H1230
        • Yoshida K.I.
        • Kawamura S.
        • Mizukami Y.
        • Kiakaze M.
        Implication of protein kinase C-α, δ and ε isoforms in ischemic preconditioning in perfused rat hearts.
        J. Biochem. 1997; 122: 506-511
        • Speechly-Dick M.E.
        • Mocanu M.M.
        • Yellon D.M.
        Protein kinase C. Its role in ischemic preconditioning in the rat.
        Circ. Res. 1994; 75: 586-590
        • Fryer R.M.
        • Schultz J.J.
        • Hsu A.K.
        • Gross G.J.
        Importance of PKC and tyrosine kinase in single or multiple cycles of preconditioning in rat hearts.
        Am. J. Physiol. Heart Circ. Physiol. 1999; 276: H1229-H1235
        • Przyklenk K.
        • Sussman M.A.
        • Simkovich B.Z.
        • Kloner R.A.
        Does ischemic preconditioning trigger translocation of protein kinase C in the canine model.
        Circulation. 1995; 92: 1546-1557
        • Kitakaze M.
        • Node K.
        • Minamino T.
        • et al.
        Role of activation of protein kinase C in the infarct size-limiting effect of ischemic preconditioning through activation of ecto-5′-nucleotidase.
        Circulation. 1996; 93: 781-791
        • Jennings R.B.
        Role of protein kinase C in preconditioning with ischemia against lethal cell injury.
        Basic Res. Cardiol. 1997; 92: 40-42
        • Ping P.
        • Zhang J.
        • Qiu Y.
        • et al.
        Ischemic preconditioning induces selective translocation of PKC isoforms ε and η in the heart of conscious rabbits without subcellular redistribution of total PKC activity.
        Circ. Res. 1997; 81: 404-414
        • Ping P.
        • Zhang J.
        • Zheng Y.T.
        • et al.
        Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinase during ischemic preconditioning in conscious rabbits.
        Circ. Res. 1999; 85: 542-550
        • Ping P.
        • Takano H.
        • Zhang J.
        • et al.
        Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits.
        Circ. Res. 1999; 84: 587-604
        • Yang X.M.
        • Sato H.
        • Downey J.M.
        • Cohen M.V.
        Protection of ischemic preconditioning is dependent upon a critical timing sequence of protein kinase C activation.
        J. Mol. Cell. Cardiol. 1997; 29: 991-999
        • Baines C.P.
        • Wang L.
        • Cohen M.V.
        • Downey J.M.
        Protein tyrosine kinase is downstream of protein kinase C for ischemic preconditioning's anti-infarct effect in the rabbit heart.
        J. Mol. Cell. Cardiol. 1998; 30: 383-392
        • Miyamae M.
        • Fujiwara H.
        • Kida M.
        • et al.
        Preconditioning improves energy metabolism during reperfusion but does not attenuate myocardial stunning in porcine hearts.
        Circulation. 1993; 88: 223-234
        • Volovsek A.
        • Subramanian R.
        • Reboussin D.
        Effects of duration of ischemia during preconditioning on mechanical function, enzyme release and energy production in the isolated working heart.
        J. Mol. Cell. Cardiol. 1992; 24: 1011-1019
        • Finegan B.A.
        • Lopaschuk G.D.
        • Gandhi M.
        • Clanachan A.S.
        Ischemic preconditioning inhibits glycolysis and proton production in isolated working rat hearts.
        Am. J. Physiol. Heart Circ. Physiol. 1995; 269: H1767-H1775
        • Schaefer S.
        • Carr L.J.
        • Prussel E.
        • Ramasamy R.
        Effects of glycogen depletion on ischemic injury in isolated rat hearts: insights into preconditioning.
        Am J. Physiol. Heart Circ. Physiol. 1995; 268: H935-H944
        • Kollocassides K.G.
        • Seymor A.M.
        • Galinanes M.
        • Hearse D.J.
        Paradoxical effect of ischemic preconditioning on ischemic contracture? NMR studies of energy metabolism and intracellular pH in the rat heart.
        J. Mol. Cell. Cardiol. 1996; 28: 1045-1057
        • Chen W.
        • Gabel S.
        • Steenbergen C.
        • Murphy E.
        A redox mechanism for cardioprotection induced by ischemic preconditioning in perfused rat heart.
        Circ. Res. 1995; 77: 424-429
        • Reimer K.A.
        • Jennings R.B.
        Ischemic preconditioning—a brief review.
        Basic Res. Cardiol. 1996; 91: 1-4
        • Wolfe C.L.
        • Sievers R.E.
        • Visseren F.L.J.
        • Donnelly T.J.
        Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment.
        Circulation. 1993; 87: 881-892
        • Mcnulty P.H.
        • Darling A.
        • Whiting J.M.
        Glycogen depletion contributes to ischemic preconditioning in the rat heart in vivo.
        Am. J. Physiol. Heart Circ. Physiol. 1996; 271: H2283-H2289
        • Weinbrenner C.
        • Wang P.
        • Downey J.M.
        Loss of glycogen during preconditioning is not a prerequisite for protection of the rabbit heart.
        Basic Res. Cardiol. 1996; 91: 374-381
        • Xia X.H.
        • Allen D.G.
        Activity of the Na+/H+ exchanger is critical to reperfusion damage and preconditioning in the isolated rat heart.
        Cardiovasc. Res. 2000; 48: 244-253
        • Meldrum D.R.
        • Dinarello C.A.
        • Shames B.D.
        • et al.
        Ischemic preconditioning decreases postischemic myocardial tumor necrosis factor-α production. Potential ultimate effector mechanism of preconditioning.
        Circulation. 1998; 98: I214-I219
        • Belosjorow S.
        • Schulz R.
        • Dirge H.
        • Schade F.U.
        • Heusch G.
        Endotoxin and ischemic preconditioning: TNF-α concentration and myocardial infarct development in rabbits.
        Am. J. Physiol. Heart Circ. Physiol. 1999; 277: H2470-H2475
        • Baxter G.F.
        • Goma F.M.
        • Yellon D.M.
        Characterisation of the infarct limiting effect of delayed preconditioning: time-course and dose-dependency studies in rabbit myocardium.
        Basic Res. Cardiol. 1997; 92: 159-167
        • Bolli R.
        The early and late phases of preconditioning against myocardial stunning and the essential role of oxyradicals in the late phase: an overview.
        Basic Res. Cardiol. 1996; 91: 57-63
        • Tang X.L.
        • Qiu Y.
        • Turrens J.F.
        • Sun J.Z.
        • Bolli R.
        Time course of late preconditioning against myocardial stunning in conscious pigs.
        Circ. Res. 1996; 79: 424-434
        • Qiu Y.
        • Maldonado C.
        • Tang X.L.
        • Bolli R.
        Late preconditioning against myocardial stunning in conscious rabbits.
        Circulation. 1995; 92: I-717
        • Arstall M.A.
        • Zhao Y.Z.
        • Hornberger L.
        • Kennedy S.P.
        • Buchholz R.A.
        • Osathanondh R.
        • Kelly R.A.
        Human ventricular myocytes in vitro exhibit both early and delayed preconditioning responses to simulated ischemia.
        J. Mol. Cell. Cardiol. 1998; 30: 1019-1025
        • Carroll R.
        • Yellon D.M.
        Delayed cardioprotection in a human cardiomyocye-derived cell line: the role of adenosine, p38MAP kinase and mitochondrial KATP.
        Basic Res. Cardiol. 2000; 95: 243-249
        • Ghosh S.
        • Standen N.B.
        • Galinanes M.
        Preconditioning the human myocardium by simulated ischemia: studies on the early and delayed protection.
        Cardiovasc. Res. 2000; 45: 339-350
        • Currie R.W.
        • Karmazyn M.
        • Kloc M.
        • Mailer K.
        Heat shock response is associated with enhanced postischemic ventricular recovery.
        Circ. Res. 1988; 63: 543-549
        • Kaszala K.
        • Vegh A.
        • Papp J.G.
        • Parratt J.R.
        Time course of the protection against ischemia and reperfusion-induced ventricular arrhythmias resulting from brief periods of cardiac pacing.
        J. Mol. Cell. Cardiol. 1996; 28: 2085-2095
        • Yamashita N.
        • Hoshida S.
        • Otsu K.
        • Ashai M.
        • Kuzuya T.
        • Hori M.
        Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation.
        J. Exp. Med. 1999; 189: 1699-1706
        • Brown J.M.
        • Gross M.A.
        • Terada L.S.
        • Whitman G.J.R.
        • Banerjee A.
        • White C.W.
        • Harken A.H.
        • Repine J.E.
        Endotoxin pretreatment increases endogenous myocardial catalase activity and decreases ischemia-reperfusion injury of isolated rat hearts.
        Proc. Natl. Acad. Sci. USA. 1989; 86: 2516-2520
        • Takano H.
        • Tang X.L.
        • Qiu Y.
        • Guo Y.
        • French B.
        • Bolli R.
        Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism.
        Circ. Res. 1998; 83: 73-84
        • Brown J.M.
        • Anderson B.O.
        • Repine J.E.
        • Shanley P.F.
        • White C.W.
        • Grosso M.A.
        • Banerjee A.
        • Bensard D.D.
        • Harken A.H.
        Neutrophils contribute to TNF induced myocardial tolerance to ischemia.
        J. Mol. Cell. Cardiol. 1992; 24: 485-495
        • Sun J.-Z.
        • Tang X.-L.
        • Knowlton A.A.
        • Park S.W.
        • Qiu Y.
        • Bolli R.
        Late preconditioning against myocardial stunning: an endogenous protective mechanism that confers resistance to postischemic dysfunction 24 hours after brief ischemia in conscious pigs.
        J. Clin. Invest. 1995; 95: 388-403
        • Kaeffer N.
        • Richard V.
        • Thuillez C.
        Delayed coronary endothelial protection 24 hours after preconditioning: role of free radicals.
        Circulation. 1997; 96: 2311-2316
        • Takano H.
        • Manchikalapudi S.
        • Tang X.L.
        • Qiu Y.
        • Rizvi A.
        • Jadoon A.K.
        • Zhang Q.
        • Bolli R.
        Nitric oxide synthase is the mediator of late preconditioning against myocardial infarction in conscious rabbits.
        Circulation. 1998; 98: 441-449
        • Qian Y.-Z.
        • Bernardo N.L.
        • Nayeem M.A.
        • Chelliah J.
        • Kukreja R.C.
        Induction of 72-kDa heat shock protein does not produce second window of ischemic preconditioning in rat heart.
        Am. J. Physiol. 1999; 276: H224-H234
        • Yamashita N.
        • Nishida M.
        • Hoshida S.
        • Kuzuya T.
        • Hori M.
        • Taniguchi N.
        • Kamada T.
        • Tada M.
        Induction of manganese superoxide dismutase in rat cardiac myocytes increases tolerance to hypoxia 24 hours after preconditioning.
        J. Clin. Invest. 1994; 94: 2193-2199
        • Yamashita N.
        • Hoshida S.
        • Otsu K.
        • Taniguchi N.
        • Kuzuya T.
        • Hori M.
        The involvement of cytokines in the second window of ischemic preconditioning.
        Br. J. Pharmacol. 2000; 131: 415-422
        • Tang X.-L.
        • Rizvi A.N.
        • Qiu Y.
        • Takano H.
        • Zhang Q.
        • Guo Y.
        • Bolli R.
        Evidence that the hydroxyl radical triggers late preconditioning against myocardial stunning in conscious rabbits.
        Circulation. 1997; 96: I-255
        • Shinmura K.
        • Tang X.L.
        • Wang Y.
        • Xuan Y.T.
        • Liu S.Q.
        • Takano H.
        • Bhatnagar A.
        • Bolli R.
        Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits.
        Proc. Natl. Acad. Sci. USA. 2000; 97: 10197-10202
        • Rizvi A.
        • Tang X.-L.
        • Qiu Y.
        • Xuan Y.-T.
        • Takano H.
        • Jadoon A.K.
        • Bolli R.
        Increased protein synthesis is necessary for the development of late preconditioning against myocardial stunning in conscious rabbits.
        Am. J. Physiol. 1999; 277: H874-H884
        • Sun J.-Z.
        • Tang X.-L.
        • Park S.W.
        • Qiu Y.
        • Turrens J.F.
        • Bolli R.
        Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs.
        J. Clin. Invest. 1996; 97: 562-576
        • Takano H.
        • Tang X.L.
        • Qiu Y.
        • Manchikalapudi S.
        • Wu W.J.
        • French B.
        • Bolli R.
        Intracoronary administration of oxygen radicals induces late preconditioning against stunning in conscious rabbits.
        Circulation. 1997; 96: I256-I257
        • Bolli R.
        • Dawn B.
        • Tang X.L.
        • Qiu Y.
        • Ping P.
        • Xuan Y.T.
        • Jones W.K.
        • Takano H.
        • Guo Y.
        • Zhang J.
        The nitric oxide hypothesis of late preconditioning.
        Basic Res. Cardiol. 1998; 93: 325-338
        • Bolli R.
        The late phase of preconditioning.
        Circ. Res. 2000; 87: 972-983
        • Kloner R.A.
        • Yellon D.
        Does ischemic preconditioning occurs in patients.
        J. Am. Coll. Cardiol. 1994; 24: 1133-1142
        • Dana A.
        • Sumeray M.S.
        • Yellon D.M.
        Ischemic preconditioning: a clinical perspective.
        Hosp. Med. 1998; 59: 216-220
        • Yellon D.M.
        • Dana A.
        The preconditioning phenomenon: a tool for the scientist or a clinical reality.
        Circ. Res. 2000; 87: 543-550
        • Wu Z.K.
        • Livainen T.
        • Pehkonen E.
        • et al.
        Ischemic preconditioning suppresses ventricular tachyarrhytmias after myocardial revascularization.
        Circulation. 2002; 106: 3091-3096
        • Kloner R.A.
        • Shook T.
        • Przyklenk K.
        • et al.
        Previous angina alters in-hospital outcome in TIMI 4: a clinical correlate to preconditioning.
        Circulation. 1995; 91: 37-45
        • Ottani F.
        • Galvani M.
        • Ferrini D.
        • et al.
        Prodromal angina limits infarct size: a role for ischemic preconditioning.
        Circulation. 1995; 91: 291-297
        • Ishihara M.
        • Sato H.
        • Tateishi H.
        • et al.
        Implication of prodromal angina pectoris in anterior wall acute myocardial infarction: acute angiographic findings and long term prognosis.
        J. Am. Coll. Cardiol. 1997; 30: 970-975
        • Abete P.
        • Ferrara N.
        • Cacciatore F.
        • Madrid A.
        • Bianco S.
        • Calabrese C.
        • Napoli C.
        • Scognamiglio P.
        • Bollella O.
        • Cioppa A.
        • Longobardi G.
        • Rengo F.
        Angina induced protection against myocardial infarction in adult and elderly patients: a loss of preconditioning mechanism in the aging heart.
        J. Am. Coll. Cardiol. 1997; 30: 947-954
        • Kloner R.A.
        • Przyklenk K.
        • Shook T.
        • et al.
        Protection conferred by preinfarct angina is manifest in the aged heart: evidence from the TIMI 4 Trial.
        J. Thromb. Thrombolysis. 1998; 6: 89-92
        • Andreotti F.
        • Pasceri V.
        • Hacket D.R.
        • et al.
        Preinfarction angina as a predictor of more rapid coronary thrombolysis in patients with acute myocardial infarction.
        New Engl. J. Med. 1996; 334: 7-12
        • Okazaki Y.
        • Kodama K.
        • Sato H.
        • et al.
        Attenuation of increased regional myocardial oxygen consumption during exercise is a major cause of warm-up phenomenon.
        J. Am. Coll. Cardiol. 1993; 21: 1597-1604
        • Tomai F.
        • Perino M.
        • Ghini A.S.
        • Crea F.
        • et al.
        Exercise-induced myocardial ischemia triggers early phase of ischemic preconditioning but does not the late phase.
        Am. J. Cardiol. 1999; 83: 586-588
        • Tomai F.
        • Crea F.
        • Danesi A.
        • Perino M.
        • et al.
        Mechanisms of the warm-up phenomenon.
        Eur. Heart J. 1996; 17: 1022-1027
        • Matsuda M.
        • Catena T.G.
        • Vanderheide R.S.
        • et al.
        Cardiac protection by ischemic preconditioning is not mediated by stunning.
        Circ. Res. 1993; 27: 585-592
        • Asimakis G.K.
        • Inners Mcbride K.
        • Medellen G.
        • Conti V.R.
        Ischemic preconditioning attenuates acidosis and postischemic dysfunction in isolated rat heart.
        Am. J. Physiol. 1992; 263: H887-H894
        • Tang X.-L.
        • Qiu Y.
        • Park S.W.
        • et al.
        Time course of late preconditioning against myocardial stunning in conscious dogs.
        Circ. Res. 1996; 79: 424-434
        • Tani M.
        • Suganuma Y.
        • Hasegawa H.
        • et al.
        Changes in ischemic tolerance and effects of ischemic preconditioning in middle-aged rat hearts.
        Circulation. 1997; 95: 2559-2566
        • Abete P.
        • Ferrara N.
        • Cioppa A.
        • et al.
        Preconditioning does not prevent postischemic dysfunction in aging heart.
        J. Am. Coll. Cardiol. 1996; 27: 1777-1786
        • Ishihara M.
        • Sato H.
        • Tateishi H.
        • et al.
        Beneficial effect of prodromal angina pectoris is lost in elderly patients with acute myocardial infarction.
        Am. Heart J. 2000; 139: 881-888
        • Burns P.G.
        • Krukenkamp I.B.
        • Caldarone C.A.
        • et al.
        Is the preconditioning response conserved in senescent myocardium.
        Ann. Thorac. Surg. 1996; 61: 925-929
        • McCully J.D.
        • Uematsu M.
        • Parker R.A.
        • et al.
        Adenosine enhanced ischemic preconditioning provides enhanced cardioprotection in the aged heart.
        Ann. Thorac. Surg. 1998; 66: 2037-2043
        • Przyklenk K.
        • Li G.
        • Whittaker P.
        No loss in the in-vivo efficacy of ischemic preconditioning in middle aged and old rabbits.
        J. Am. Coll. Cardiol. 2001; 38: 1741-1747
        • Sato T.
        • Sasaki N.
        • O'Rourke B.
        • Marban E.
        Nicorandil, a potent cardioprotective agent, acts by opening mitochondrial ATP-dependent potassium channels.
        J. Am. Coll. Cardiol. 2000; 35: 514-518
        • Lee T.-M.
        • Sue S.-F.
        • Chou T.F.
        • et al.
        Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty.
        Circulation. 2002; 105: 334-340
        • Shinmura K.
        • Kodani E.
        • Xuan Y.-T.
        • et al.
        Effect of aspirin on late preconditioning against myocardial stunning in conscious rabbits.
        J. Am. Coll. Cardiol. 2003; 41: 1183-1194
        • Mahaffey K.W.
        • Puma J.A.
        • Barbagelata N.A.
        • et al.
        Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomised, placebo-controlled trial.
        J. Am. Coll. Cardiol. 1999; 34: 1711-1720
        • Klimt C.R.
        • Knatterud G.L.
        • Meinert C.L.
        • Prout T.E.
        A study of the effects of hypoglicemic agents on vascular complications in patients with adult onset diabetes.
        Diabetes. 1970; 19: 747-830
        • Tsuchida A.
        • Thompson R.
        • Olsson R.A.
        • Downey J.M.
        The anti-infarct effect of an adenosine A1 selective agonist is diminished after prolonged infusion as is the cardioprotective effect of ischemic preconditioning in rabbit heart.
        J. Mol. Cell. Cardiol. 1994; 26: 303-311
        • Dana A.
        • Baxter G.F.
        • Walker J.M.
        • Yellon D.M.
        Prolonging the delayed phase of myocardial protection: repetitive adenosine A1 receptor activation maintains rabbit myocardium in a preconditioned state.
        J. Am. Coll. Cardiol. 1998; 31: 1142-1149