Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities

  • Robert S Rosenson
    Tel.: +1-312-695-0013; fax: +1-312-695-0047.
    Preventive Cardiology Center, Northwestern University, The Feinberg School of Medicine, 201 E. Huron Street, Galter Pavilion, Suite 11-120, Chicago, IL 60611, USA
    Search for articles by this author


      Low-density lipoprotein (LDL) cholesterol is an established risk factor for coronary heart disease (CHD). In the presence of oxidative stress LDL particles can become oxidized to form a lipoprotein species that is particularly atherogenic. Indeed, oxidized LDL (oxLDL) is pro-inflammatory, it can cause endothelial dysfunction and it readily accumulates within the arterial wall. Several factors may influence the susceptibility of LDL to oxidation, including its size and composition, and the presence of endogenous antioxidant compounds, such as α-tocopherol. Individuals with type 2 diabetes or the metabolic syndrome have high levels of oxidative stress and consequently are at an increased risk for cardiovascular events. Reducing oxidative stress has been proposed as a potential approach to prevent CHD and antioxidant vitamins have been employed with encouraging results in experimental models of atherosclerosis. However, clinical trials have not demonstrated consistent beneficial effects of antioxidants on cardiovascular outcomes. Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are the first-line choice for lowering total and LDL cholesterol levels and they have been proven to reduce the risk of CHD. Recent data suggest that these compounds, in addition to their lipid-lowering ability, can also reduce the production of reactive oxygen species and increase the resistance of LDL to oxidation. It may be that the ability of statins to limit the oxidation of LDL contributes to their effectiveness at preventing atherosclerotic disease.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Rosenson R.S.
        • Tangney C.C.
        Antiatherothrombotic properties of statins: implications for cardiovascular event reduction.
        J. Am. Med. Assoc. 1998; 279: 1643-1650
      1. Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults. Executive summary of the third report of the national cholesterol education program (NCEP), expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). J Am Med Assoc 2001;285:2486–97.

        • Giugliano D.
        • Ceriello A.
        • Paolisso G.
        Diabetes mellitus, hypertension, and cardiovascular disease: which role for oxidative stress?.
        Metabolism. 1995; 44: 363-368
        • Siems W.
        • Quast S.
        • Carluccio F.
        • et al.
        Oxidative stress in chronic renal failure as a cardiovascular risk factor.
        Clin. Nephrol. 2002; 58: S12-S19
        • Keaney Jr., J.F.
        • Larson M.G.
        • Vasan R.S.
        • et al.
        Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 434-439
        • Stamler J.
        • Vaccaro O.
        • Neaton J.D.
        • Wentworth D.
        Diabetes, other risk factors, and 12-year cardiovascular mortality for men screened in the multiple risk factor intervention trial.
        Diabetes Care. 1993; 16: 434-444
        • Wood D.
        • De Backer G.
        • Faergeman O.
        • Graham I.
        • Mancia G.
        • Pyörälä K.
        Prevention of coronary heart disease in clinical practice: recommendations of the second joint task force of European and other societies on coronary prevention.
        Eur. Heart J. 1998; 19: 1434-1503
        • Schnohr P.
        • Jensen J.S.
        • Scharling H.
        • Nordestgaard B.G.
        Coronary heart disease risk factors ranked by importance for the individual and community. A 21 year follow-up of 12,000 men and women from The Copenhagen City Heart Study.
        Eur. Heart J. 2002; 23: 620-626
        • Maytin M.
        • Leopold J.
        • Lascalzo J.
        Oxidant stress in the vasculature.
        Curr. Atheroscler. Rep. 1999; 1: 156-164
        • Holvoet P.
        • Kritchevsky S.B.
        • Tracy R.P.
        • Cummings S.
        • Goodpaster B.
        • Harris T.B.
        The metabolic syndrome is associated with elevated circulating oxidized LDL in the health, aging and body composition cohort.
        Circulation. 2002; 106: A3594
        • Steinberg D.
        • Parthasarathy C.
        • Carew T.E.
        • Khoo J.C.
        • Witztum J.L.
        Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity.
        N. Engl. J. Med. 1989; 320: 915-924
        • Witztum J.L.
        • Steinberg D.
        The oxidative modification hypothesis of atherosclerosis: does it hold for humans?.
        Trends Cardiovasc. Med. 2001; 11: 93-102
        • Yla-Herttuala S.
        • Palinski W.
        • Rosenfield M.E.
        • et al.
        Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man.
        J. Clin. Invest. 1989; 84: 1086-1095
        • Hulthe J.
        • Fagerberg B.
        Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study).
        Arterioscler. Thromb. Vasc. Biol. 2002; 22: 1162-1167
        • Inoue T.
        • Uchida T.
        • Kamishirado H.
        • Takayanagi K.
        • Morooka S.
        Antibody against oxidized low density lipoprotein may predict progression or regression of atherosclerotic coronary artery disease.
        J. Am. Coll. Cardiol. 2001; 37: 1871-1876
        • Toshima S.
        • Hasegawa A.
        • Kurabayashi M.
        • et al.
        Circulating oxidized low density lipoprotein levels. A biochemical risk marker for coronary heart disease.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2243-2247
        • Vasankari T.
        • Ahotupa M.
        • Toikka J.
        • et al.
        Oxidized LDL and thickness of carotid intima-media are associated with coronary atherosclerosis in middle-aged men: lower levels of oxidized LDL with statin therapy.
        Atherosclerosis. 2001; 155: 403-412
        • Aviram M.
        • Maor I.
        • Keidar S.
        • et al.
        Lesioned low density lipoprotein in atherosclerotic apolipoprotein E-deficient transgenic mice and in humans is oxidised and aggregated.
        Biochem. Biophys. Res. Commun. 1995; 216: 501-513
        • Wang X.
        • Greilberger J.
        • Ratschek M.
        • Jurgens G.
        Oxidative modifications of LDL increase its binding to extracelluar matrix from human aortic intima: influence of lesion development, lipoprotein lipase and calcium.
        J. Pathol. 2001; 195: 244-250
        • Quinn M.T.
        • Parthasarathy S.
        • Fong L.G.
        • Steinberg D.
        Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis.
        Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 2995-2998
        • Berliner J.A.
        • Territo M.C.
        • Sevanian A.
        • et al.
        Minimally modified low density lipoprotein stimulates monocyte endothelial interactions.
        J. Clin. Invest. 1990; 85: 1260-1266
        • Andalibi A.
        • Liao F.
        • Imes S.
        • Fogelman A.M.
        • Lusis A.J.
        Oxidized lipoproteins influence gene expression by causing oxidative stress and activating the transcription factor NF-kappa B.
        Biochem. Soc. Trans. 1993; 21: 651-655
        • Janabi M.
        • Yamashita S.
        • Hirano K.
        • et al.
        Oxidized LDL-induced NF-kappa B activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1953-1960
        • de Winther M.P.
        • van Dijk K.W.
        • Havekes L.M.
        • Hofker M.H.
        Macrophage scavenger receptor class A: a multifunctional receptor in atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 290-297
        • Li D.
        • Chen H.
        • Romeo F.
        • Sawamura T.
        • Saldeen T.
        • Mehta J.L.
        Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1.
        J. Pharmacol. Exp. Ther. 2002; 302: 601-605
        • Cushing S.D.
        • Berliner J.A.
        • Valente A.J.
        • et al.
        Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells.
        Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 5134-5138
        • Terkeltaub R.
        • Banka C.L.
        • Solan J.
        • Santoro D.
        • Brand K.
        • Curtiss L.K.
        Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity.
        Arterioscler. Thromb. 1994; 14: 47-53
        • Claise C.
        • Edeas M.
        • Chalas J.
        • Cockx A.
        • Abella A.
        • Capel L.
        • Lindenbaum A.
        Oxidized low-density lipoprotein induces the production of interleukin-8 by endothelial cells.
        FEBS Lett. 1996; 398: 223-227
        • Hulthe J.
        • Fagerberg B.
        Circulating oxidized LDL is associated with increased levels of cell-adhesion molecules in clinically healthy 58-year old men (AIR Study).
        Med. Sci. Monit. 2002; 8: CR148-CR152
        • Spieker L.E.
        • Luscher T.F.
        • Noll G.
        Current strategies and perspectives for correcting and endothelial dysfunction in atherosclerosis.
        J. Cardiovasc. Pharmacol. 2001; 38: S35-41
        • Gewaltig M.T.
        • Kojda G.
        Vasoprotection by nitric oxide: mechanisms and therapeutic potential.
        Cardiovasc. Res. 2002; 55: 250-260
        • Thorne S.A.
        • Abbot S.E.
        • Winyard P.G.
        • Blake D.R.
        • Mills P.G.
        Extent of oxidative modification of low density lipoprotein determines the degree of cytotoxicity to human coronary artery cells.
        Heart. 1996; 75: 11-16
        • Liao J.K.
        • Shin W.S.
        • Lee W.Y.
        • Clark S.L.
        Oxidized low-density lipoprotein decreases the expression of endothelial nitric oxide synthase.
        J. Biol. Chem. 1995; 270: 319-324
        • Wang H.D.
        • Pagano P.J.
        • Du Y.T.
        • et al.
        Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide.
        Circ. Res. 1998; 82: 810-818
        • Blair A.
        • Shaul P.W.
        • Yuhanna I.S.
        • Conrad P.A.
        • Smart E.J.
        Oxidized low density lipoprotein displaces endothelial nitric-oxide (eNOS) from plasmalemmal caveolae and impairs eNOS activation.
        J. Biol. Chem. 1999; 274: 32512-32519
        • Cai H.
        • Harrison D.G.
        Endothelial dysfunction in cardiovascular disease: the role of oxidant stress.
        Circ. Res. 2000; 87: 840-844
        • Mehta J.L.
        • Li D.Y.
        • Chen H.J.
        • Joseph J.
        • Romeo F.
        Inhibition of LOX-1 by statins may relate to upregulation of eNOS.
        Biochem. Biophys. Res. Commun. 2001; 289: 857-861
        • Cominacini L.
        • Rigoni A.
        • Pasini A.F.
        et al. The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide.
        J. Biol. Chem. 2001; 276: 13750-13755
        • Austin M.A.
        • Breslow J.L.
        • Hennekens C.H.
        • Buring J.E.
        • Willett W.C.
        • Krauss R.M.
        Low-density lipoprotein subclass patterns and risk of myocardial infarction.
        J. Am. Med. Assoc. 1988; 260: 1917-1921
        • Campos H.
        • Genest Jr., J.J.
        • Blijlevens E.
        • et al.
        Low density lipoprotein particle size and coronary artery disease.
        Arterioscler. Thromb. 1992; 12: 187-195
        • Watts G.F.
        • Mandalia S.
        • Brunt J.N.H.
        • Slavin B.M.
        • Coltart D.J.
        • Lewis B.
        Independent associations between plasma lipoprotein subfraction levels and the course of coronary artery disease in the St. Thomas’ Atherosclerosis Regression Study (STARS).
        Metabolism. 1993; 42: 1461-1467
        • Lamarche B.
        • Tchernof A.
        • Moorjani S.
        • et al.
        Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study.
        Circulation. 1997; 95: 69-75
        • Lamarche B.
        • St-Pierre A.C.
        • Ruel I.L.
        • Cantin B.
        • Dagenais G.R.
        • Després J.P.
        A prospective, population-based study of low density lipoprotein particle size as a risk factor for ischemic heart disease in men.
        Can. J. Cardiol. 2001; 17: 859-865
        • Zambon A.
        • Hokanson J.E.
        • Brown G.
        • Brunzell J.D.
        Evidence for a new pathophysiological mechanism for coronary artery disease regression: hepatic lipase-mediated changes in LDL density.
        Circulation. 1999; 99: 1959-1964
        • Rosenson R.S.
        • Otvis J.D.
        • Freedman D.S.
        Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the pravastatin limitation of atherosclerosis in the coronary arteries (PLAC-I) trial.
        Am. J. Cardiol. 2002; 90: 89-94
        • Griffin B.A.
        Lipoprotein atherogenicity: an overview of current mechanisms.
        Proc. Nutr. Soc. 1999; 58: 163-169
        • Anber V.
        • Griffin B.A.
        • McConnell M.
        • Packard C.J.
        • Shepherd J.
        Influence of plasma lipid and LDL-subfraction profile on the interaction between low density lipoprotein with human arterial wall proteoglycans.
        Atherosclerosis. 1996; 124: 261-271
        • de Graaf J.
        • Hak-Lemmers H.L.M.
        • Hectors M.P.C.
        • Demacker P.N.M.
        • Hendriks J.C.M.
        • Stalenhoef A.F.H.
        Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects.
        Arterioscler. Thromb. 1991; 11: 298-306
        • Tribble D.L.
        • Holl L.G.
        • Wood P.D.
        • Krauss R.M.
        Variations in oxidative susceptibility among six low density lipoprotein subfractions of differing density and particle size.
        Atherosclerosis. 1992; 93: 189-199
        • Dejager S.
        • Bruckert E.
        • Chapman M.J.
        Dense low density lipoprotein subspecies with diminished oxidative resistance predominate in combined hyperlipidemia.
        J. Lipid Res. 1993; 34: 295-308
        • Ohmura H.
        • Mokuno H.
        • Sawano M.
        • et al.
        Lipid compositional differences of small, dense low-density lipoprotein particle influence its oxidative susceptibility: possible implication of increased risk of coronary artery disease in subjects with phenotype B.
        Metabolism. 2002; 51: 1081-1087
        • Kondo A.
        • Muranaka Y.
        • Ohta I.
        • et al.
        Relationship between triglyceride concentrations and LDL size evaluated by malondialdehyde-modified LDL.
        Clin. Chem. 2001; 47: 893-900
        • Tribble D.L.
        • M R.
        • Lansberg M.G.
        • Thiel P.M.
        • van der Berg J.J.
        Greater oxidative susceptibility of the surface monolayer in small dense LDL may contribute to differences in copper-induced oxidation among LDL density subfractions.
        J. Lipid Res. 1995; 36: 662-671
        • Subbaiah P.V.
        • Subramanian V.S.
        • Wang K.
        Novel physiological function of sphingomyelin in plasma. Inhibition of lipid peroxidation in low density lipoproteins.
        J. Biol. Chem. 1999; 274: 36409-36414
        • Schuster B.
        • Prassel R.
        • Nigon F.
        • Chapman J.M.
        • Laggner P.
        Core lipid structure is a major determinant of the oxidative resistance of low density lipoprotein.
        Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 2509-2513
        • Carr A.C.
        • McCall M.R.
        • Frei B.
        Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1716-1723
        • Tribble D.L.
        • van der Berg J.J.
        • Motchnik P.A.
        • et al.
        Oxidative susceptibility of low density lipoprotein subfractions is related to their ubiquinol-10 and alpha-tocopherol content.
        Proc. Natl. Acad. Sci. U.S.A. 1994; 91: 1183-1187
        • Aviram M.
        • Rosenblat M.
        • Etzioni A.
        • Levy R.
        Activation of NADPH oxidase required for macrophase-mediated oxidation of low-density lipoprotein.
        Metabolism. 1996; 45: 1069-1079
        • Meyer J.W.
        • Schmitt M.E.
        A central role for the endothelial NADPH oxidase in atherosclerosis.
        FEBS Lett. 2000; 472: 1-4
        • Funk C.D.
        • Cyrus T.
        12/15-Lipoxygenase, oxidative modification of LDL and atherogenesis.
        Trends Cardiovasc. Med. 2001; 11: 116-124
        • Cyrus T.
        • Practico D.
        • Zhao L.
        Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein E-deficient mice.
        Circulation. 2001; 103: 2277-2281
        • Yuan X.M.
        • Brunk U.T.
        Iron and LDL-oxidation in atherogenesis.
        APMIS. 1998; 106: 825-842
        • Burkitt M.J.
        A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin.
        Arch. Biochem. Biophys. 2001; 394: 117-135
        • Heinloth A.
        • Heermeier K.
        • Raff U.
        • Wanner C.
        • Galle J.
        Stimulation of NADPH oxidase by oxidized low-density lipoprotein induces proliferation of human vascular endothelial cells.
        J. Am. Soc. Nephrol. 2000; 11: 1819-1825
        • Patel R.P.
        • Levonen A.-L.
        • Crawford J.H.
        • Darley-Usmar V.W.
        Mechanisms of the pro- and anti-oxidant actions of nitric oxide in atherosclerosis.
        Cardiovasc. Res. 2000; 47: 465-474
        • Darley-Usmar V.M.
        • Hogg N.
        • O’Leary V.J.
        • Wilson M.T.
        • Moncada S.
        The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein.
        Free Radic. Res. Commun. 1992; 17: 9-20
        • Graham A.
        • Hogg N.
        • Kalyanaraman B.
        • O’Leary V.
        • Darley-Usmar V.
        • Moncada S.
        Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor.
        FEBS Lett. 1993; 330: 181-185
        • Hogg N.
        • Kalyanaraman B.
        • Joseph J.
        • Struck A.
        • Parthasarathy S.
        Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis.
        FEBS Lett. 1993; 334: 170-174
        • Leeuwenburgh C.
        • Hardy M.M.
        • Hazen S.L.
        • et al.
        Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima.
        J. Biol. Chem. 1997; 272: 1433-1436
        • Xia Y.
        • Dawson V.L.
        • Dawson T.M.
        • Snyder S.H.
        • Zweier J.L.
        Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury.
        Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 6770-6774
        • Vásquez-Vivar J.
        • Kalyanaraman B.
        • Martásek P.
        • et al.
        Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors.
        Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 9220-9225
        • Guzik T.J.
        • Mussa S.
        • Gastaldi D.
        Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase.
        Circulation. 2002; 105: 1656-1662
        • Sakuma S.
        • Fujimoto Y.
        • Gohda Y.
        • Fujita T.
        Tetrahydrobiopterin inhibits copper-induced oxidation of low density lipoprotein.
        Res. Commun. Mol. Pathol. Pharmacol. 2000; 107: 397-406
        • Goss S.P.
        • Kalyanaraman B.
        • Hogg N.
        Antioxidant effects of nitric oxide and nitric oxide and nitric oxide donor compounds on low-density lipoprotein oxidation.
        Methods Enzymol. 1999; 301: 444-453
        • Anderson T.J.
        • Meredith I.T.
        • Charbonneau F.
        • et al.
        Endothelium-dependent coronary vasomotion relates to the susceptibility of LDL to oxidation in humans.
        Circulation. 1996; 93: 1647-1650
        • Liao L.
        • Granger D.N.
        Modulation of oxidized low-density lipoprotein-induced microvascular dysfunction by nitric oxide.
        Am. J. Physiol. 1995; 268: H1643-H1650
        • Hogg N.
        • Struck A.
        • Goss S.P.
        • et al.
        Inhibition of macrophage-dependent low density lipoprotein oxidation by nitric-oxide donors.
        J. Lipid Res. 1995; 36: 1756-1762
        • Rubbo H.
        • Parthasarathy S.
        • Barnes S.
        • Kirk M.
        • Kalyanaraman B.
        • Freeman B.A.
        Nitric oxide inhibition of lipoxygenase-dependent liposome and low-density lipoprotein oxidation: termination of radical chain propagation reactions and formation of nitrogen-containing oxidized lipid derivatives.
        Arch. Biochem. Biophys. 1995; 324: 15-25
        • Seccia M.
        • Perugini C.
        • Bellomo G.
        The formation of some antigenic epitopes in oxidized human low-density lipoprotein is inhibited by nitric oxide.
        Biochem. Biophys. Res. Commun. 1997; 232: 613-617
        • Mackness M.I.
        • Arrol S.
        • Abbott C.
        • Durrington P.N.
        Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase.
        Atherosclerosis. 1993; 104: 129-135
        • Navab M.
        • Hama S.Y.
        • Anantharamaiah G.M.
        • et al.
        Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3.
        J. Lipid Res. 2000; 41: 1495-1508
        • Navab M.
        • Hama S.Y.
        • Cooke C.J.
        Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1.
        J. Lipid Res. 2000; 41: 1481-1494
        • Uittenbogaard A.
        • Shaul P.W.
        • Yuhanna I.S.
        • Blair A.
        • Smart E.J.
        High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae.
        J. Biol. Chem. 2000; 275: 11278-11283
        • Watson A.D.
        • Berliner J.A.
        • Hama S.Y.
        • et al.
        Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein.
        J. Clin. Invest. 1995; 96: 2882-2891
        • Aviram M.
        • Rosenblat M.
        • Bisgaier C.L.
        • Newton R.S.
        • Primo-Parmo S.L.
        • La Du B.N.
        Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase.
        J. Clin. Invest. 1998; 101: 1581-1590
        • Ford E.S.
        • Giles W.H.
        • Dietz W.H.
        Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Examination Survey.
        J. Am. Med. Assoc. 2002; 287: 356-359
        • Isomaa B.
        • Almgren P.
        • Tuomi T.
        • et al.
        Cardiovascular morbidity and mortality associated with the metabolic syndrome.
        Diabetes Care. 2001; 24: 683-689
        • Kendall D.M.
        • Harmel A.P.
        The metabolic syndrome, type 2 diabetes, and cardiovascular disease: understanding to role of insulin resistance.
        Am. J. Manage. Care. 2002; 8: S635-S653
        • Trevisan M.
        • Browne R.
        • Ram M.
        • et al.
        Correlates of markers of oxidative status in the general population.
        Am. J. Epidemiol. 2001; 154: 348-356
        • Haffner S.M.
        • Mukkanen L.
        • Robbins D.
        A preponderance of small dense LDL is associated with specific insulin, proinsulin and the components of the insulin resistance syndrome in non-diabetic subjects.
        Diabetologia. 1995; 38: 1328-1336
        • Grundy S.M.
        Hypertriglyceridemia, insulin resistance, and the metabolic syndrome.
        Am. J. Cardiol. 1999; 83: 25F-29F
        • Lamarche B.
        • Lemieux I.
        • Despres J.P.
        The small, dense LDL phenotype and the risk of coronary heart disease: epidemiology, pathophysiology and therapeutic aspects.
        Diabetes Metab. 1999; 25: 199-211
        • Ginsberg H.N.
        • Huang L.S.
        The insulin resistance syndrome: impact on lipoprotein metabolism and atherothrombosis.
        J. Cardiovasc. Risk. 2000; 7: 325-331
        • Fagerberg B.
        • Bokemark L.
        • Hulthe J.
        The metabolic syndrome, smoking, and antibodies to oxidized LDL in 58-year-old clinically healthy men.
        Nutr. Metab. Cardiovasc. Dis. 2001; 11: 227-235
        • Sigurdardottir V.
        • Fagerberg B.
        • Hulthe J.
        Circulating oxidized low-density lipoprotein (LDL) is associated with risk factors of the metabolic syndrome and LDL size in clinically healthy 58-year-old men (AIR Study).
        J. Intern. Med. 2002; 252: 440-447
        • Dotevall A.
        • Hulthe J.
        • Rosengren A.
        • Wiklund O.
        • Wilhelmsen L.
        Autoantibodies against oxidized low-density lipoprotein and C-reactive protein are associated with diabetes and myocardial infarction in women.
        Clin. Sci. London. 2001; 101: 523-531
        • Mäkimattila S.
        • Liu M.L.
        • Vakkilainen J.
        • et al.
        Impaired endothelium-dependent vasodilation in type 2 diabetes.
        Diabetes Care. 1999; 22: 973-981
        • Will J.C.
        • Ford E.S.
        • Bowman B.A.
        Serum Vitamin C concentrations and diabetes: findings from the third National Health Survey and Nutrition Examination Survey, 1988–1994.
        Am. J. Clin. Nutr. 1999; 70: 49-52
        • Mironova M.A.
        • Klein R.L.
        • Virella G.T.
        • Lopes-Virella M.F.
        Anti-modified LDL antibodies, LDL-containing immune complexes, and susceptibility of LDL to in vitro oxidation in patients with type 2 diabetes.
        Diabetes. 2000; 49: 1033-1041
        • Boemi M.
        • Leviev I.
        • Sirolla C.
        • Pieri C.
        • Marra M.
        • James R.W.
        Serum paraoxonase is reduced in type 1 diabetic patients compared to non-diabetic, first degree relatives influence on the ability of HDL to protect LDL from oxidation.
        Atherosclerosis. 2001; 155: 229-235
        • Hink U.
        • Li H.
        • Mollnau H.
        • et al.
        Mechanisms underlying endothelial dysfunction in diabetes mellitus.
        Circ. Res. 2001; 88: e14-e22
        • Griffin E.
        • Re A.
        • Hamel N.
        • et al.
        A link between diabetes and atherosclerosis: glucose regulates expression of CD36 at the level of translation.
        Nat. Med. 2001; 7: 840-846
        • Keaney Jr., J.F.
        • Gaziano J.M.
        • Xu A.
        • et al.
        Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits.
        Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 11880-11884
        • Anderson T.I.
        • Matz J.
        • Ferns G.A.
        • Anggard E.E.
        Vitamin E reverses cholesterol-induced endothelial dysfunction in the rabbit coronary circulation.
        Atherosclerosis. 1994; 111: 39-45
        • Keegan A.
        • Walbank H.
        • Cotter A.M.
        • Cameron N.E.
        Chronic Vitamin E treatment prevents defective endothelium-dependent relaxation on diabetic rat aorta.
        Diabetologia. 1995; 38: 1475-1478
        • Carew T.E.
        • Schwenke D.C.
        • Steinberg D.
        Antiatherogenic effect of probucol unrelated to its hypercholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit.
        Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 7725-7729
        • Kita T.
        • Nagano Y.
        • Yokode M.
        • et al.
        Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia.
        Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 5928-5931
        • Sparrow C.P.
        • Doebber T.W.
        • Olszewski J.
        et al. Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N′-diphenyl-phenylenediamine.
        J. Clin. Invest. 1992; 89: 1885-1891
        • Parker R.A.
        • Sabrah T.
        • Cap M.
        • Gill B.T.
        Relation of vascular oxidative stress, alpha-tocopherol, and hypercholesterolemia to early atherosclerosis in hamsters.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 349-358
        • Chang M.Y.
        • Sasahara M.
        • Chait A.
        • Raines E.W.
        • Ross R.
        Inhibition of hypercholesterolemia-induced atherosclerosis in the nonhuman primate by probucol. II. Cellular composition and proliferation.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1631-1640
        • Fruebis J.
        • Bird D.A.
        • Pattison J.
        • Palinski W.
        Extent of antioxidant protection of plasma LDL is not a predictor of the antiatherogenic effect of antioxidants.
        J. Lipid Res. 1997; 38: 2455-2464
        • McDowell I.F.
        • Brennan G.M.
        • McEneny J.
        • et al.
        The effect of probucol and Vitamin E treatment on the oxidation of low-density lipoprotein and forearm vascular responses in humans.
        Eur. J. Clin. Invest. 1994; 24: 759-765
        • Gilligan D.M.
        • Sack M.N.
        • Guetta V.
        • et al.
        Effect of antioxidant vitamins on low density lipoprotein oxidation and impaired endothelium-dependent vasodilation in patients with hypercholesterolemia.
        J. Am. Coll. Cardiol. 1994; 24: 1611-1617
        • Heitzer T.
        • Yla Herttuala S.
        • Wild E.
        • Luoma J.
        • Drexler H.
        Effect of Vitamin E on endothelial vasodilator function in patients with hypercholesterolemia, chronic smoking or both.
        J. Am. Coll. Cardiol. 1999; 33: 499-505
        • Kugiyama K.
        • Motoyama T.
        • Doi H.
        • et al.
        Improvement of endothelial vasomotor dysfunction by treatment with alpha-tocopherol in patients with high remnant lipoproteins levels.
        J. Am. Coll. Cardiol. 1999; 33: 1512-5518
        • Enstrom J.E.
        • Kanim L.E.
        • Klain M.A.
        Vitamin C intake and mortality among a sample of the United States population.
        Epidemiology. 1992; 3: 194-202
        • Rimm E.B.
        • Stampfer M.J.
        • Ascherio A.
        • Giovannucci E.
        • Colditz G.A.
        • Willett W.C.
        Vitamin E consumption and the risk of coronary heart disease in men.
        N. Engl. J. Med. 1993; 328: 1450-1456
        • Stampfer M.J.
        • Hennekens C.H.
        • Manson J.E.
        • Colditz G.A.
        • Rosner B.
        • Willett W.C.
        Vitamin E consumption and the risk of coronary disease in women.
        N. Engl. J. Med. 1993; 328: 1444-1449
        • Nyyssonen K.
        • Parviainen M.T.
        • Salonen R.
        • Tuomilehto J.
        • Salonen J.T.
        Vitamin C deficiency and risk of myocardial infarction: prospective population study of men from eastern Finland.
        Br. Med. J. 1997; 314: 634-638
        • Hodis H.N.
        • Mack W.J.
        • LaBree L.
        • et al.
        Serial coronary angiographic evidence that antioxidant vitamin intake reduces progression of coronary artery atherosclerosis.
        J. Am. Med. Assoc. 1995; 273: 1849-1854
        • Kritchevsky S.B.
        • Shimakawa T.
        • Tell G.S.
        Dietary antioxidants and carotid artery wall thickness. The ARIC Study. Atherosclerosis Risk in Communities Study.
        Circulation. 1995; 92: 2142-2150
        • Salonen J.T.
        • Nyyssonen K.
        • Salonen R.
        • et al.
        Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study: a randomized trial of the effect of Vitamins E and C on 3-year progression of carotid atherosclerosis.
        J. Intern. Med. 2000; 248: 377-386
        • Stephens N.G.
        • Parsons A.
        • Schofield P.M.
        • Kelly F.
        • Cheeseman K.
        • Mitchinson M.J.
        Randomised controlled trial of Vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS).
        Lancet. 1996; 347: 781-786
      2. GISSI Prevenzione Group. Dietary supplementation with n − 3 polyunsaturated fatty acids and Vitamin E after myocardial infarction: results of the GISSI-prevenzione trial. Gruppo Italian per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 1999;354:447–55.

        • Yusuf S.
        • Dagenais G.
        • Pogue J.
        • Bosch J.
        • Sleight P.
        Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators.
        N. Engl. J. Med. 2000; 342: 154-160
        • Hodis H.N.
        • Mack W.J.
        • LaBree L.
        • et al.
        Alpha-tocopherol supplementation in healthy individuals reduces low-density lipoprotein oxidation but not atherosclerosis: the Vitamin E Atherosclerosis Prevention Study (VEAPS).
        Circulation. 2002; 106: 1453-1459
        • Hennekens C.H.
        • Buring J.E.
        • Manson J.E.
        • et al.
        Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease.
        N. Engl. J. Med. 1996; 334: 1145-1149
        • Omenn G.S.
        • Goodman C.E.
        • Thornquist M.D.
        • et al.
        Effects of a combination of beta carotene and Vitamin A on lung cancer and cardiovascular disease.
        N. Engl. J. Med. 1996; 334: 1150-1155
      3. Heart Protection Study Group. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:23–33.

        • Aikawa M.
        • Sugiyama S.
        • Hill C.C.
        • et al.
        Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma.
        Circulation. 2002; 106: 1390-1396
        • Roberts C.K.
        • Vaziri N.D.
        • Barnard R.J.
        Effect of diet and exercise intervention on blood pressure, insulin, oxidative stress, and nitric oxide availability.
        Circulation. 2002; 106: 2530-2532
      4. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994;344:1383–9.

        • Shepherd J.
        • Cobbe S.M.
        • Ford I.
        • et al.
        Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia.
        N. Engl. J. Med. 1995; 333: 1301-1307
        • Sacks F.M.
        • Pfeffer M.A.
        • Moye L.A.
        • et al.
        The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels.
        N. Engl. J. Med. 1996; 335: 1001-1009
        • Downs J.R.
        • Clearfield M.
        • Weis S.
        • et al.
        Primary prevention of acute coronary events in men and women with average cholesterol levels. Results of AFCAPS/TexCAPS.
        J. Am. Med. Assoc. 1998; 279: 1615-1622
      5. The Long-Term Intervention with Pravastatin in Ischemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med 1998;339:1349–57.

      6. Heart Protection Study Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:7–22.

        • Shepherd J.
        • Blauw G.J.
        • Murphy M.B.
        • et al.
        Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial.
        Lancet. 2002; 360: 1623-1630
        • Jones P.
        • Kafonek S.
        • Laurora I.
        • Hunninghake D.
        Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES) study.
        Am. J. Cardiol. 1998; 81: 582-587
        • Olsson A.G.
        • McTaggart F.
        • Raza A.
        Rosuvastatin: a highly effective new HMG-CoA reductase inhibitor.
        Cardiovasc. Drug Rev. 2002; 20: 303-328
        • McKenney J.M.
        • McCormick L.S.
        • Schaefer E.J.
        • Black D.M.
        • Watkins M.L.
        Effect of niacin and atorvastatin on lipoprotein subclasses in patients with atherogenic dyslipidemia.
        Am. J. Cardiol. 2001; 88: 270-274
        • Caslake M.J.
        • Stewart G.
        • Day S.
        • et al.
        Rosuvastatin normalises atherogenic levels of ApoB-containing lipoprotein subfractions.
        Int. J. Clin. Pract. 2002; 124: 8
        • Forster L.F.
        • Stewart G.
        • Bedford D.
        • et al.
        Influence of atorvastatin and simvastatin on apolipoprotein B metabolism in moderate combined hyperlipidemic subjects with low VLDL and LDL fractional clearance rates.
        Atherosclerosis. 2002; 164: 129-145
        • Otvos J.D.
        • Shalaurova I.
        • Freedman D.S.
        • Rosenson R.S.
        Effects of pravastatin treatment on lipoprotein subclass profiles and particle size in the PLAC-I trial.
        Atherosclerosis. 2002; 160: 41-48
        • Prassl R.
        • Caslake M.J.
        • Packard C.J.
        • Palmer M.K.
        • Chapman J.M.
        Rosuvastatin enhances lipid fluidity in atherogenic Apo-B containing lipoproteins.
        Atheroscler. Suppl. 2002; 3: 187
        • Asztalos B.F.
        • Horvath K.V.
        • McNamara J.R.
        • Roheim P.S.
        • Rubinstein J.J.
        • Schaefer E.J.
        Comparing the effects of five different statins on the HDL subpopulation profiles of coronary heart disease patients.
        Atherosclerosis. 2002; 164: 361-369
        • Ballantyne C.M.
        • Olsson A.G.
        • Cook T.J.
        • Mercuri M.F.
        • Pederson T.R.
        • Kjekshus J.
        Influence of low high-density lipoprotein cholesterol and elevated triglyceride on coronary heart disease events and response to simvastatin therapy in 4S.
        Circulation. 2001; 104: 3046-3051
        • Ballantyne C.M.
        • Tuomilehto J.
        • Southworth H.
        • Blasetto J.W.
        Efficacy of rosuvastatin in patients with the ‘metabolic syndrome’.
        Diabetes. 2002; 51: A151
        • Tomás M.
        • Sentı́ M.
        • Garcı́a-Faria F.
        • et al.
        Effect of simvastatin therapy on paraoxonase activity and related lipoproteins in familial hypercholesterolemic patients.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2113-2119
        • Neunteufl T.
        • Kostner K.
        • Katzenschlager R.
        • Zehetgruber M.
        • Maurer G.
        • Weidinger F.
        Additional benefit of Vitamin E supplementation to simvastatin therapy on vasoreactivity of the brachial artery of hypercholesterolemic men.
        J. Am. Coll. Cardiol. 1998; 32: 711-716
        • Brown B.G.
        • Zhao X.-Q.
        • Chait A.
        • et al.
        Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease.
        N. Engl. J. Med. 2001; 345: 1583-1592
        • Sanguigni V.
        • Pignatelli P.
        • Caccese D.
        • et al.
        Atorvastatin decreases platelet superoxide anion production in hypercholesterolemic patients.
        Eur. Heart J. 2002; 4: 372
        • Li W.
        • Asagami T.
        • McTaggart F.
        • Tsao P.
        Rosuvastatin inhibits monocyte/endothelial interactions in APOE (−/−) mice.
        Int. J. Clin. Pract. 2002; 24: 5
        • Rikitake Y.
        • Kawashima S.
        • Takeshita S.
        • et al.
        Anti-oxidative properties of fluvastatin, an HMG-CoA reductase inhibitor, contribute to prevention of atherosclerosis in cholesterol-fed rabbits.
        Atherosclerosis. 2001; 154: 87-96
        • Sumi D.
        • Hayashi T.
        • Thankur N.K.
        • et al.
        A HMG-CoA reductase inhibitor possesses a potent anti-atherosclerotic effect other than serum lipid lowering effects—the relevance of endothelial nitric oxide synthase and superoxide anion scavenging action.
        Atherosclerosis. 2001; 155: 347-357
        • Yasuhara M.
        • Suzumura K.
        • Tankaka K.
        • et al.
        Fluvastatin, an HNG-CoA reductase inhibitor, protects LDL from oxidative modification in hypercholesterolemic rabbits.
        Biol. Pharm. Bull. 2000; 23: 570-574
        • Giroux L.M.
        • Davignon J.
        • Naruszewicz M.
        Simvastatin inhibits the oxidation of low-density lipoproteins by activated human monocyte-derived macrophages.
        Biochim. Biophys. Acta. 1993; 1165: 335-338
        • Inoue T.
        • Hayashi M.
        • Takayanagi K.
        • Morooka S.
        Lipid-lowering therapy with fluvastatin inhibits oxidative modification of low density lipoprotein and improves vascular endothelial function in hypercholesterolemic patients.
        Atherosclerosis. 2002; 160: 369-376
        • Wassmann S.
        • Laufs U.
        • Muller K.
        • et al.
        Cellular antioxidant effects of atorvastatin in vitro and in vivo.
        Arterioscler. Thromb. Vasc. Biol. 2002; 22: 300-305
        • Wassmann S.
        • Laufs U.
        • Baumer A.T.
        • et al.
        HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species.
        Hypertension. 2001; 37: 1450-1457
        • Delbosc S.
        • Morena M.
        • Djouad F.
        • Ledoucen C.
        • Descomps B.
        • Cristol J.P.
        Statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are able to reduce superoxide anion production by NADPH oxidase in THP-1-derived monocytes.
        J. Cardiovasc. Pharmacol. 2002; 40: 611-617
        • Guzik T.J.
        • Kapelak B.
        • Guzik B.
        • et al.
        Mechanisms of increased vascular superoxide generation in human coronary arteries from patients with coronary artery disease.
        Eur. Heart J. 2002; 4: 297
        • Rueckschloss U.
        • Galle J.
        • Holtz J.
        • Zerkowski H.R.
        • Morawietz H.
        Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells: antioxidative potential of hydroxymethylglutaryl coenzyme A reductase inhibitor therapy.
        Circulation. 2001; 104: 1767-1772
        • Kaesemeyer W.H.
        • Caldwell R.B.
        • Huang J.
        • Caldwell R.W.
        Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions.
        J. Am. Coll. Cardiol. 1999; 33: 234-241
        • Dobrucki L.W.
        • Kalinowski L.
        • Dobrucki I.T.
        • Malinski T.
        Statin-stimulated nitric oxide release from endothelium.
        Med. Sci. Monit. 2001; 7: 622-627
        • Laufs U.
        • Gertz K.
        • Dirnagl U.
        • Bohm M.
        • Nickenig G.
        • Endres M.
        Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice.
        Brain Res. 2002; 942: 23-30
        • Hattori Y.
        • Nakanishi N.
        • Kasai K.
        Statin enhances cytokine-mediated induction of nitric oxide synthesis in vascular smooth muscle cells.
        Cardiovasc. Res. 2002; 54: 649-658
        • Fuhrman B.
        • Koren L.
        • Volkova N.
        • Keidar S.
        • Hayek T.
        • Aviram M.
        Atorvastatin therapy in hypercholesterolemic patients suppresses cellular uptake of oxidized-LDL by differentiating monocytes.
        Atherosclerosis. 2002; 164: 179-185
        • Rosenson R.S.
        Non-lipid-lowering effects of statins on atherosclerosis.
        Curr. Cardiol. Rep. 1999; 1: 225-232
        • Ferro D.
        • Parrotto S.
        • Basili S.
        • Alessandri C.
        • Violi F.
        Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hypercholesterolemia.
        J. Am. Coll. Cardiol. 2000; 36: 427-431
        • Crisby M.
        • Nordin-Fredriksson G.
        • Shah P.K.
        • Yano J.
        • Zhu J.
        • Nilsson J.
        Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization.
        Circulation. 2001; 103: 926-933
        • Weber C.
        • Erl W.
        • Weber K.S.
        • Weber P.C.
        HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia.
        J. Am. Coll. Cardiol. 1997; 30: 1212-1217
        • Rosenson R.S.
        • Tangney C.C.
        • Parker T.S.
        • Levine D.M.
        • Gordon B.R.
        Statin therapy reduces oxidative stress and inhibits monocyte chemoattractant protein-1 (MCP-1) production in healthy adults with moderate hypercholesterolemia.
        Circulation. 2002; 106: A3669
        • Sakai M.
        • Kobori S.
        • Matsumura T.
        HMG-CoA reductase inhibitors suppress macrophage growth induced by oxidized low density lipoprotein.
        Atherosclerosis. 1997; 133: 51-59