Advertisement

Modulation of HDL metabolism by probucol in complete cholesteryl ester transfer protein deficiency

      Abstract

      Probucol, an antioxidative and hypolipidemic agent, has been postulated to increase reverse cholesterol transport by enhancing cholesteryl ester transfer protein (CETP) activity. However, its clinical implication in CETP deficient patients has not been fully defined. To characterize the effects of probucol in the absence of CETP, we evaluated the changes in lipid profile, lipid peroxidation, and paraoxonase 1 (PON1) activity in two complete CETP deficient patients, caused by treatment with probucol.
      When the patients were not receiving probucol, low-density lipoprotein (LDL) particles were smaller and high-density lipoprotein (HDL) particles were larger in these patients than in controls. Treatment with probucol (500 mg/day) resulted in the decrease in the levels of HDL-C and apolipoprotein (apo) A-I up to 22%. The size of HDL particles became smaller. LDL cholesterol concentration did not change in one patient, while it decreased by 47% in the other. PON1 activity/HDL-C, which was about 40% lower in the patients before treatment than in controls with the matching PON1 genotype, increased by 30% during the treatment. Lag time for LDL and HDL in both cases became prolonged more than 1.8 times after administration of probucol.
      This study demonstrated for the first time that probucol reduces HDL-C even in humans with complete CETP deficiency. Probucol treatment in these patients was also associated with protection of lipoproteins against oxidative stress, suggesting a clinical benefit of this drug even in such a state.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gordon D.J.
        • Probstfield J.L.
        • Garrison R.J.
        • Neaton J.D.
        • Castelli W.P.
        • Knoke J.D.
        • et al.
        High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies.
        Circulation. 1989; 79: 8-15
        • Durrington P.N.
        • Mackness B.
        • Mackness M.I.
        Paraoxonase and atherosclerosis.
        Arterioscler Thromb. Vasc. Biol. 2001; 21: 473-480
        • Watson A.D.
        • Berliner J.A.
        • Hama S.Y.
        • La Du B.N.
        • Faull K.F.
        • Fogelman A.M.
        • et al.
        Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein.
        J. Clin. Invest. 1995; 96: 2882-2891
        • Tall A.R.
        Plasma cholesteryl ester transfer protein.
        J. Lipid Res. 1993; 34: 1255-1274
        • Zhong S.
        • Sharp D.S.
        • Grove J.S.
        • Bruce C.
        • Yano K.
        • Curb J.D.
        • et al.
        Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels.
        J. Clin. Invest. 1996; 97: 2917-2923
        • Hirano K.
        • Yamashita S.
        • Nakajima N.
        • Arai T.
        • Maruyama T.
        • et al.
        Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity.
        Arterioscler Thromb. Vasc. Biol. 1997; 17: 1053-1059
        • Agerholm-Larsen B.
        • Nordestgaard B.G.
        • Steffensen R.
        • Jensen G.
        • Tybjaerg-Hansen A.
        Elevated HDL cholesterol is a risk factor for ischemic heart disease in white women when caused by a common mutation in the cholesteryl ester transfer protein gene.
        Circulation. 2000; 101: 1907-1912
        • Yamamoto A.
        • Matsuzawa Y.
        • Kishino B.
        • Hayashi R.
        • Hirobe K.
        • Kikkawa T.
        Effects of probucol on homozygous cases of familial hypercholesterolemia.
        Atherosclerosis. 1983; 48: 157-166
        • Yamamoto A.
        • Matsuzawa Y.
        • Yokoyama S.
        • Funahashi T.
        • Yamamura T.
        • Kishino B.
        Effects of probucol on xanthomata regression in familial hypercholesterolemia.
        Am. J. Cardiol. 1986; 57: 29H-35H
        • Parthasarathy S.
        • Young S.G.
        • Witztum J.L.
        • Pittman R.C.
        • Steinberg D.
        Probucol inhibits oxidative modification of low density lipoprotein.
        J. Clin. Invest. 1986; 77: 641-644
        • Franceschini G.
        • Sirtori M.
        • Vaccarino V.
        • Gianfranceschi G.
        • Rezzonico L.
        • Chiesa G.
        • et al.
        Mechanisms of HDL reduction after probucol. Changes in HDL subfractions and increased reverse cholesteryl ester transfer.
        Arteriosclerosis. 1989; 9: 462-469
        • McPherson R.
        • Hogue M.
        • Milne R.W.
        • Tall A.R.
        • Marcel Y.L.
        Increase in plasma cholesteryl ester transfer protein during probucol treatment. Relation to changes in high density lipoprotein composition.
        Arterioscler Thromb. 1991; 11: 476-481
        • Chiesa G.
        • Michelagnoli S.
        • Cassinotti M.
        • Gianfranceschi G.
        • Werba J.P.
        • Pazzucconi F.
        • et al.
        Mechanisms of high-density lipoprotein reduction after probucol treatment: changes in plasma cholesterol esterification/transfer and lipase activities.
        Metabolism. 1993; 42: 229-235
        • Ishigami M.
        • Yamashita S.
        • Sakai N.
        • Hirano K.I.
        • Arai T.
        • et al.
        High-density lipoproteins from probucol-treated patients have increased capacity to promote cholesterol efflux from mouse peritoneal macrophages loaded with acetylated low-density lipoproteins.
        Eur. J. Clin. Invest. 1997; 27: 285-292
        • Tsujita M.
        • Yokoyama S.
        Selective inhibition of free apolipoprotein-mediated cellular lipid efflux by probucol.
        Biochemistry. 1996; 35: 13011-13020
        • Rinninger F.
        • Wang N.
        • Ramakrishnan R.
        • Jiang X.C.
        • Tall A.R.
        Probucol enhances selective uptake of HDL-associated cholesteryl esters in vitro by a scavenger receptor B-I-dependent mechanism.
        Arterioscler Thromb. Vasc. Biol. 1999; 19: 1325-1332
        • Tsujita M.
        • Tomimoto S.
        • Okumura-Noji K.
        • Okazaki M.
        • Yokoyama S.
        Apolipoprotein-mediated cellular cholesterol/phospholipid efflux and plasma high density lipoprotein level in mice.
        Biochim. Biophys. Acta. 2000; 1485: 199-213
        • Gotoda T.
        • Kinoshita M.
        • Ishibashi S.
        • Inaba T.
        • Harada K.
        • et al.
        Skipping of exon 14 and possible instability of both the mRNA and the resultant truncated protein underlie a common cholesteryl ester transfer protein deficiency in Japan.
        Arterioscler Thromb. Vasc. Biol. 1997; 17: 1376-1381
        • Humbert R.
        • Adler D.A.
        • Disteche C.M.
        • Hassett C.
        • Omiecinski C.J.
        • Furlong C.E.
        The molecular basis of the human serum paraoxonase activity polymorphism.
        Nat. Genet. 1993; 3: 73-76
        • Eckerson H.W.
        • Romson J.
        • Wyte C.
        • La Du B.N.
        The human serum paraoxonase polymorphism: identification of phenotypes by their response to salts.
        Am. J. Hum. Genet. 1983; 35: 214-227
        • Aviram M.
        • Vaya J.
        Markers for low-density lipoprotein oxidation.
        Methods Enzymol. 2001; 335: 244-256
        • Kawamura M.
        • Heinecke J.W.
        • Chait A.
        Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway.
        J. Clin. Invest. 1994; 94: 771-778
        • Kita T.
        • Nagano Y.
        • Yokode M.
        • Ishii K.
        • Kume N.
        • Ooshima A.
        • et al.
        Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia.
        Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 5928-5931
        • Oshima R.
        • Ikeda T.
        • Watanabe K.
        • Itakura H.
        • Sugiyama N.
        Probucol treatment attenuates the aortic atherosclerosis in Watanabe heritable hyperlipidemic rabbits.
        Atherosclerosis. 1998; 137: 13-22
        • Naruszewicz M.
        • Carew T.E.
        • Pittman R.C.
        • Witztum J.L.
        • Steinberg D.
        A novel mechanism by which probucol lowers low density lipoprotein levels demonstrated in the LDL receptor-deficient rabbit.
        J. Lipid Res. 1984; 25: 1206-1213
        • Matsuzawa Y.
        • Yamashita S.
        • Funahashi T.
        • Yamamoto A.
        • Tarui S.
        Selective reduction of cholesterol in HDL2 fraction by probucol in familial hypercholesterolemia and hyper HDL2 cholesterolemia with abnormal cholesteryl ester transfer.
        Am. J. Cardiol. 1988; 62: 66B-72B
        • de Graaf J.
        • Hendriks J.C.
        • Demacker P.N.
        • Stalenhoef A.F.
        Identification of multiple dense LDL subfractions with enhanced susceptibility to in vitro oxidation among hypertriglyceridemic subjects. Normalization after clofibrate treatment.
        Arterioscler Thromb. 1993; 13: 712-719
        • Calvo D.
        • Gomez-Coronado D.
        • Lasuncion M.A.
        • Vega M.A.
        CLA-1 is an 85-kD plasma membrane glycoprotein that acts as a high-affinity receptor for both native (HDL, LDL, and VLDL) and modified (OxLDL and AcLDL) lipoproteins.
        Arterioscler Thromb. Vasc. Biol. 1997; 17: 2341-2349
        • Sugano M.
        • Sawada S.
        • Tsuchida K.
        • Makino N.
        • Kamada M.
        Low density lipoproteins develop resistance to oxidative modification due to inhibition of cholesteryl ester transfer protein by a monoclonal antibody.
        J. Lipid Res. 2000; 41: 126-133
        • Hoff H.F.
        • Whitaker T.E.
        • O’Neil J.
        Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition.
        J. Biol. Chem. 1992; 267: 602-609
        • Mackness B.
        • Davies G.K.
        • Turkie W.
        • Lee E.
        • Roberts D.H.
        • Hill E.
        • et al.
        Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype?.
        Arterioscler Thromb. Vasc. Biol. 2001; 21: 1451-1457
        • Jarvik G.P.
        • Rozek L.S.
        • Brophy V.H.
        • Hatsukami T.S.
        • Richter R.J.
        • Schellenberg G.D.
        • et al.
        Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1 (192) or PON1 (55) genotype.
        Arterioscler Thromb. Vasc. Biol. 2000; 20: 2441-2447