Postprandial hyperlipidemia: another correlate of the “hypertriglyceridemic waist” phenotype in men


      Fasting hypertriglyceridemia has been reported to be predictive of an exaggerated triglyceride (TG) response to an oral fat load. Abdominal obesity has also been associated with postprandial hyperlipidemia. The objective of the present study was to quantify the contribution of abdominal obesity and fasting hypertriglyceridemia to the magnitude of postprandial lipemia. For that purpose, potential differences in postprandial TG-rich lipoprotein (TRL) levels were examined among men characterized by the absence/presence of the “hypertriglyceridemic waist” phenotype following a standardized breakfast with a high fat content (64% calories as fat). Sixty-nine men (mean age±S.D.: 45.1±10.5 years) were classified according to waist girth (< 90 or ≥ 90 cm) and fasting TG concentrations (< 2.0 or ≥ 2.0 mmol/l). Subjects characterized by “hypertriglyceridemic waist” (waist≥90 cm and fasting TG≥2.0 mmol/l) showed the highest TRL-TG concentrations (P<0.0001) throughout the entire postprandial period (8 h) as well as elevated concentrations of apolipoprotein (apo) B-48 and apo B-100 in all TRL fractions (large, medium and small) compared to subjects with low fasting TG levels who had waist girth values either above or below 90 cm. These higher postprandial TRL-TG levels among carriers of the “hypertriglyceridemic waist” phenotype also led to significantly greater postprandial TG-total area under the curve (AUC) in total TRLs resulting mainly from the increased concentrations of large- and medium-sized TRLs. Furthermore, subjects characterized by the “hypertriglyceridemic waist” phenotype displayed higher fasting insulin concentrations and postprandial insulin AUC compared to men with low fasting plasma TG levels and low waist girth values. In conclusion, results of the present study indicate that postprandial hyperlipidemia is associated with the simultaneous presence of abdominal obesity and elevated fasting TG concentrations: a condition that we have described as the “hypertriglyceridemic waist” phenotype.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Després J.P.
        • Lemieux I.
        • Prud’homme D.
        Treatment of obesity: need to focus on high risk abdominally obese patients.
        BMJ. 2001; 322: 716-720
        • Couillard C.
        • Bergeron N.
        • Prud’homme D.
        • Bergeron J.
        • Tremblay A.
        • Bouchard C.
        • et al.
        Postprandial triglyceride response in visceral obesity in men.
        Diabetes. 1998; 47: 953-960
        • Wideman L.
        • Kaminsky L.A.
        • Whaley M.H.
        Postprandial lipemia in obese men with abdominal fat patterning.
        J. Sports Med. Phys. Fitness. 1996; 36: 204-210
      1. Bray G, Bouchard C, James W. In: Handbook of obesity. USA: Marcel Dekker; 1998.

        • Lemieux I.
        • Pascot A.
        • Couillard C.
        • Lamarche B.
        • Tchernof A.
        • Alméras N.
        • et al.
        Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men?.
        Circulation. 2000; 102: 179-184
      2. Lohman T, Roche A, Martorel R. The Airlie (VA) consensus conference standardization of anthropometric measurements. In: Standardization of anthopometric measurements. Champaign, IL; 1988. p. 39–80.

        • van der Kooy K.
        • Seidell J.C.
        Techniques for the measurement of visceral fat: a practical guide.
        Int. J. Obes. Relat. Metab. Disord. 1993; 17: 187-196
      3. Behnke AR, Wilmore JH. In: Cliffs E, editor. Evaluation and regulation of body build and composition. Englewood Cliffs (NJ): Prentice-Hall; 1974. p. 20–37.

        • Siri W.E.
        The gross composition of the body.
        Adv. Biol. Med. Phys. 1956; 4: 239-280
        • Ferland M.
        • Després J.P.
        • Tremblay A.
        • Pinault S.
        • Nadeau A.
        • Moorjani S.
        • et al.
        Assessment of adipose tissue distribution by computed axial tomography in obese women: association with body density and anthropometric measurements.
        Br. J. Nutr. 1989; 61: 139-148
        • Richterich R.
        • Dauwalder H.
        Zur bestimmung der plasmaglukosekonzentration mit der hexokinase- glucose-6-phosphat-dehydrogenase-methode.
        Schweiz Med Wochenschr. 1971; 101: 615-618
        • Desbuquois B.
        • Aurbach G.D.
        Use of polyethylene glycol to separate free and antibody- bound peptide hormones in radioimmunoassays.
        J. Clin. Endocrinol. Metab. 1971; 37: 732-738
        • Heding L.G.
        Radioimmunological determination of human C-peptide in serum.
        Diabetologia. 1975; 11: 541-548
        • Matthews D.R.
        • Hosker J.P.
        • Rudenski A.S.
        • Naylor B.A.
        • Treacher D.F.
        • Turner R.C.
        Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
        Diabetologia. 1985; 28: 412-419
        • Moorjani S.
        • Dupont A.
        • Labrie F.
        • Lupien P.J.
        • Brun D.
        • Gagné C.
        • et al.
        Increase in plasma high density lipoprotein concentration following complete androgen blockage in men with prostatic carcinoma.
        Metabolism. 1987; 36: 244-250
        • Ruotolo G.
        • Zhang H.
        • Bentsianov V.
        • Le N.A.
        Protocol for the study of the metabolism of retinyl esters in plasma lipoproteins during postprandial lipemia.
        J. Lipid Res. 1992; 33: 1541-1549
        • Burstein M.
        • Samaille J.
        Sur un dosage rapide du cholestérol lié aux beta-lipoprotéines du sérum.
        Clin. Chim. Acta. 1960; 5: 609-610
        • Noma A.
        • Okabe H.
        • Kita M.
        A new colorimetric microdetermination of free fatty acids in serum.
        Clin. Chim. Acta. 1973; 43: 317-320
        • Laurell C.B.
        Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies.
        Anal. Biochem. 1966; 15: 45-52
        • Schneeman B.O.
        • Kotite L.
        • Todd K.M.
        • Havel R.J.
        Relationships between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat- containing meal in normolipidemic humans.
        Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 2069-2073
        • Bergeron N.
        • Kotite L.
        • Havel R.J.
        Simultaneous quantification of apolipoproteins B-100, B-48, and E separated by SDS-PAGE.
        Methods Enzymol. 1996; 263: 82-94
        • Krauss R.M.
        • Burke D.J.
        Identification of multiple subclasses of plasma low density lipoproteins in normal humans.
        J. Lipid Res. 1982; 23: 97-104
        • McNamara J.R.
        • Campos H.
        • Ordovas J.M.
        • Peterson J.
        • Wilson P.W.
        • Schaefer E.J.
        Effect of gender, age, and lipid status on low density lipoprotein subfraction distribution. Results from the Framingham Offspring Study.
        Arteriosclerosis. 1987; 7: 483-490
      4. Nilsson-Ehle P, Ekman R. Specific assays for lipoprotein lipase and hepatic lipase activities of post heparin plasma. In: H P, editor. Protides and Biological fluids. Oxford: Pergamon Press; 1978.

        • St-Amand J.
        • Moorjani S.
        • Lupien P.J.
        • Prud’homme D.
        • Després J.P.
        The relation of plasma triglyceride, apolipoprotein B, and high-density lipoprotein cholesterol to postheparin lipoprotein lipase activity is dependent on apolipoprotien E polymorphism.
        Metabolism. 1996; 45: 261-267
        • Couillard C.
        • Bergeron N.
        • Prud’homme D.
        • Bergeron J.
        • Tremblay A.
        • Bouchard C.
        • et al.
        Gender difference in postprandial lipemia: importance of visceral adipose tissue accumulation.
        Arterioscler Thromb. Vasc. Biol. 1999; 19: 2448-2455
        • Halkes C.J.
        • Castro Cabezas M.
        • van Wijk J.P.
        • Erkelens D.W.
        Gender differences in diurnal triglyceridemia in lean and overweight subjects.
        Int. J. Obes. Relat. Metab. Disord. 2001; 25: 1767-1774
        • Lamarche B.
        • Tchernof A.
        • Mauriège P.
        • Cantin B.
        • Dagenais G.R.
        • Lupien P.J.
        • et al.
        Fasting insulin and apolipoprotein B levels and low-density lipoprotein particle size as risk factors for ischemic heart disease.
        JAMA. 1998; 279: 1955-1961
        • Boquist S.
        • Ruotolo G.
        • Tang R.
        • Bjorkegren J.
        • Bond M.G.
        • de Faire U.
        • et al.
        Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men.
        Circulation. 1999; 100: 723-728
        • Patsch J.R.
        • Miesenbock G.
        • Hopferwieser T.
        • Muhlberger V.
        • Knapp E.
        • Dunn J.K.
        • et al.
        Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state.
        Arterioscler Thromb. 1992; 12: 1336-1345
        • Lupattelli G.
        • Pasqualini L.
        • Siepi D.
        • Marchesi S.
        • Pirro M.
        • Vaudo G.
        • et al.
        Increased postprandial lipemia in patients with normolipemic peripheral arterial disease.
        Am. Heart J. 2002; 143: 733-738
        • Zilversmit D.B.
        Atherogenesis: a postprandial phenomenon.
        Circulation. 1979; 60: 473-485
        • Rebuffe-Scrive M.
        • Lonnroth P.
        • Marin P.
        • Wesslau C.
        • Bjorntorp P.
        • Smith U.
        Regional adipose tissue metabolism in men and postmenopausal women.
        Int. J. Obes. 1987; 11: 347-355
        • Patsch J.R.
        • Prasad S.
        • Gotto Jr., A.M.
        • Patsch W.
        High density lipoprotein. 2. Relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipemia, and to the activities of lipoprotein lipase and hepatic lipase.
        J. Clin. Invest. 1987; 80: 341-347
        • Brunzell J.D.
        • Hazzard W.R.
        • Porte Jr., D.
        • Bierman E.L.
        Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man.
        J. Clin. Invest. 1973; 52: 1578-1585
        • Mamo J.C.
        • Watts G.F.
        • Barrett P.H.
        • Smith D.
        • James A.P.
        • Pal S.
        Postprandial dyslipidemia in men with visceral obesity: an effect of reduced LDL receptor expression?.
        Am. J. Physiol. Endocrinol. Metab. 2001; 281: E626-E632
        • Hotamisligil G.S.
        Molecular mechanisms of insulin resistance and the role of the adipocyte.
        Int. J. Obes. Relat. Metab. Disord. 2000; 24: S23-S27
        • Kern P.A.
        Potential role of TNFalpha and lipoprotein lipase as candidate genes for obesity.
        J. Nutr. 1997; 127: 1917S-1922S
        • Krauss R.M.
        • Grunfeld C.
        • Doerrler W.T.
        • Feingold K.R.
        Tumor necrosis factor acutely increases plasma levels of very low density lipoproteins of normal size and composition.
        Endocrinology. 1990; 127: 1016-1021
        • Marcovina S.M.
        • Gaur V.P.
        • Albers J.J.
        Biological variability of cholesterol, triglyceride, low- and high- density lipoprotein cholesterol, lipoprotein(a), and apolipoproteins A-I and B.
        Clin. Chem. 1994; 40: 574-578
        • Smith S.J.
        • Cooper G.R.
        • Myers G.L.
        • Sampson E.J.
        Biological variability in concentrations of serum lipids: sources of variation among results from published studies and composite predicted values.
        Clin. Chem. 1993; 39: 1012-1022
        • O’Meara N.M.
        • Lewis G.F.
        • Cabana V.G.
        • Iverius P.H.
        • Getz G.S.
        • Polonsky K.S.
        Role of basal triglyceride and high density lipoprotein in determination of postprandial lipid and lipoprotein responses.
        J. Clin. Endocrinol. Metab. 1992; 75: 465-471
        • Ooi T.C.
        • Simo I.E.
        • Yakichuk J.A.
        Delayed clearance of postprandial chylomicrons and their remnants in the hypoalphalipoproteinemia and mild hypertriglyceridemia syndrome.
        Arterioscler Thromb. 1992; 12: 1184-1190
        • Couillard C.
        • Bergeron N.
        • Pascot A.
        • Alméras N.
        • Bergeron J.
        • Tremblay A.
        • et al.
        Evidence for impaired lipolysis in abdominally obese men: postprandial study of apolipoprotein B-48- and B-100-containing lipoproteins.
        Am. J. Clin. Nutr. 2002; 76: 311-318