Advertisement

Post-heparin lipolytic enzyme activities, sex hormones and sex hormone-binding globulin (SHBG) in men and women: The HERITAGE Family Study

      Abstract

      We tested the hypothesis that androgen, estrogen, and sex hormone-binding globulin (SHBG) levels would be significantly related to post-heparin hepatic lipase (HL) and lipoprotein lipase (LPL) activities in a sample of Caucasian men (n=233) and women (n=235) aged 17–64 years from the HERITAGE Family Study. Body composition (hydrostatic weighing), abdominal adipose tissue distribution (computed tomography), plasma lipid–lipoprotein and hormone levels, and post-heparin lipases activities were measured. HL activity was significantly higher in males, whereas LPL activity was higher in women (P<0.005). In women only, HL activity was positively associated with body fat mass (r=0.17, P<0.05) and intra-abdominal adipose tissue area (r=0.18, P<0.05). Significant associations were also found between fasting insulin and LPL activity (r=−0.16, P<0.05 and r=−0.18, P<0.005) as well as HL activity (r=0.22, P<0.005, and r=0.27, P<0.0001) in men and women, respectively. A positive association between total testosterone and HL activity was noted in men (r=0.13, P=0.05). In women, plasma SHBG levels were negatively associated with HL activity (r=−0.48, P<0.0001), and statistical adjustment for body fat mass, visceral adipose tissue area, and fasting insulin did not attenuate this correlation. In multivariate analyses with models including adiposity variables and measurements of the hormonal profile, insulin, and testosterone levels were both independent positive predictors of HL activity in men. In women, hormone use was a significant positive predictor, and SHBG level a strong negative predictor of HL activity, independent of plasma estradiol and testosterone concentrations. Fasting insulin was the only significant predictor of LPL activity in men (negative association), whereas menstrual status, fasting insulin (negative associations), and plasma SHBG levels (positive association) were all independent predictors of LPL activity in women. These results suggest that the postulated sensitivity of lipolytic enzymes to androgens and estrogens is reflected by a strong negative association between SHBG levels and HL, and a lower magnitude positive association of this hormonal parameter to LPL activity in women. These associations appear to be independent from concomitant variation in total adiposity or body fat distribution.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kuusi T.
        • Taskinen M.R.
        • Nikkilä E.A.
        Lipoproteins, lipopytic enzymes, and hormonal status in hypothyroid women at different levels of substitution.
        J. Clin. Endocrinol. Metab. 1988; 66: 51-56
        • Sorva R.
        • Kuusi T.
        • Dunkel L.
        • Taskinen M.R.
        Effects of endogenous sex steroids on serum lipoproteins and post-heparin plasma lipolytic enzymes.
        J. Clin. Endocrinol. Metab. 1988; 66: 408-413
        • Haffner S.M.
        • Valdez R.A.
        Endogenous sex hormones: impact on lipids, lipoproteins, and insulin.
        Am. J. Med. 1995; 98: 40S-47S
        • Perret B.
        • Mabile L.
        • Martinez L.
        • Tercé F.
        • Barbaras R.
        • Collet X.
        Hepatic lipase: structure/function relationship, synthesis, and regulation.
        J. Lipid Res. 2002; 43: 1163-1169
        • Mead J.R.
        • Irvine S.A.
        • Ramji D.P.
        Lipoprotein lipase: structure, function, regulation, and role in disease.
        J. Mol. Med. 2002; 80: 753-769
        • Després J.P.
        • Ferland M.
        • Moorjani S.
        • Nadeau A.
        • Tremblay A.
        • Lupien P.J.
        • et al.
        Role of hepatic-triglyceride lipase activity in the association between intra-abdominal fat and plasma HDL-cholesterol in obese women.
        Arteriosclerosis. 1989; 9: 485-492
        • Rosner W.
        Plasma steroid-binding proteins.
        Endocrinol. Metab. Clin. North Am. 1991; 20: 697-720
        • Tchernof A.
        • Labrie F.
        • Bélanger A.
        • Prud’homme D.
        • Bouchard C.
        • Tremblay A.
        • et al.
        Relationships between endogenous steroid hormone, sex hormone binding globulin and lipoprotein levels in men: contribution of visceral obesity, insulin levels and other metabolic variables.
        Atherosclerosis. 1997; 133: 235-244
        • Haffner S.M.
        • Katz M.S.
        • Stern M.P.
        • Dunn J.F.
        Association of decreased sex hormone-binding globulin and cardiovascular risk factors.
        Atherosclerosis. 1989; 9: 136-143
        • Haffner S.M.
        • Dunn J.F.
        • Katz M.S.
        Relationship of sex hormone-binding globulin to lipid, lipoprotein, glucose, and insulin concentrations in postmenopausal women.
        Metabolism. 1992; 41: 278-284
        • Semmens J.
        • Rouse I.
        • Beilin L.J.
        • Masarei J.R.
        Relationship of plasma HDL-cholesterol to testosterone, estradiol, and sex-hormone-binding globulin levels in men and women.
        Metabolism. 1983; 32: 428-432
        • Tchernof A.
        • Toth M.J.
        • Poehlman E.T.
        Sex hormone-binding globulin levels in middle-aged premenopausal women. Associations with visceral obesity and metabolic profile.
        Diabetes Care. 1999; 22: 1875-1881
        • Tchernof A.
        • Després J.P.
        Sex steroid hormones, sex hormone-binding globulin, and obesity in men and women.
        Horm. Metab. Res. 2000; 32: 526-536
        • Goodman-Gruen D.
        • Barrett-Connor E.
        Sex hormone-binding globulin and glucose tolerance in postmenopausal women. The Rancho Bernardo Study.
        Diabetes Care. 1997; 20: 645-649
        • Sherif K.
        • Kushner H.
        • Falkner B.E.
        Sex hormone-binding globulin and insulin resistance in African-American women.
        Metabolism. 1998; 47: 70-74
        • Birkeland K.I.
        • Hanssen K.F.
        • Torjesen P.A.
        • Vaaler S.
        Level of sex hormone-binding globulin is positively correlated with insulin sensitivity in men with type 2 diabetes.
        J. Clin. Endocrinol. Metab. 1993; 76: 275-278
        • Plymate S.R.
        • Matej L.A.
        • Jones R.E.
        • Friedl K.E.
        Inhibition of sex hormone-binding globulin production in the human hepatoma (Hep G2) cell line by insulin and prolactine.
        J. Clin. Endocrinol. Metab. 1988; 67: 460-464
        • Nestler J.E.
        • Powers L.P.
        • Matt D.W.
        • Steingold K.A.
        • Plymate S.R.
        • Rittmaster R.S.
        • et al.
        A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome.
        J. Clin. Endocrinol. Metab. 1991; 72: 83-89
        • Bouchard C.
        • Leon A.S.
        • Rao D.C.
        • Skinner J.S.
        • Wilmore J.H.
        • Gagnon J.
        The HERITAGE Family Study. Aims, design, and measurement protocol.
        Med. Sci. Sports Exerc. 1995; 27: 721-729
        • Bergeron J.
        • Couillard C.
        • Després J.P.
        • Gagnon J.
        • Leon A.S.
        • Rao D.C.
        • et al.
        Race differences in the response of post-heparin plasma liporotein lipase and hepatic lipase activities to endurance exercise training in men: results from the HERITAGE Family study.
        Atherosclerosis. 2001; 159: 399-406
      1. Lohman T, Roche A, Martorel R. Standardization of anthropometric measurements. In: Proceedings of The Airlie (VA) Consensus Conference on the Human Kinetics. IL: Champaign; 1988. pp. 20–37.

      2. Behnke AR, Wilmore JH. Evaluation and regulation of body build and composition. Englewood Cliffs, NJ: Prentice Hall; 1974. p. 236.

      3. Siri W. Body composition from fluid spaces and density: analysis of methods. In: Brozek J, Henschel A editors. Techniques for measuring body composition. Washington, D.C.: National Academy of Sciences; 1961.

        • Lohman T.G.
        Applicability of body composition techniques and constants for children and youths.
        Exerc. Sport Sci. Rev. 1986; 14: 325-357
        • Wilmore J.H.
        • Stanforth P.R.
        • Domenick M.A.
        • Gagnon J.
        • Daw E.W.
        • Leon A.S.
        • et al.
        Reproducibility of anthropometric and body composition measurements: the HERITAGE Family Study.
        Int. J. Obes. 1997; 21: 297-303
        • Després J.P.
        • Prud’homme D.
        • Pouliot M.C.
        • Tremblay A.
        • Bouchard C.
        Estimation of deep abdominal adipose-tissue accumulation from simple anthropometric measurements in men.
        Am. J. Clin. Nutr. 1991; 54: 471-477
        • Ferland M.
        • Després J.P.
        • Tremblay A.
        • Pinault S.
        • Nadeau A.
        • Moorjani S.
        • et al.
        Assessment of adipose tissue distribution by computed axial tomography in obese women: association with body density and anthropometric measurements.
        Br. J. Nutr. 1989; 61: 139-148
        • Kvist H.
        • Sjöstrom L.
        • Tylen U.
        Adipose tissue volume determinations in women by computed tomography: technical considerations.
        Int. J. Obes. 1986; 10: 53-67
        • Couillard C.
        • Gagnon J.
        • Bergeron J.
        • Leon A.S.
        • Rao D.C.
        • Skinner J.S.
        • et al.
        Contribution of body fatness and adipose tissue distribution to the age variation in plasma steroid hormone concentrations in men: the HERITAGE Family Study.
        J. Clin. Endocrinol. Metab. 2000; 85: 1026-1031
        • Vermeulen A.
        • Verdonck L.
        • Kaufman J.M.
        A critical evaluation of simple methods for the estimation of free testosterone in serum.
        J. Clin. Endocrinol. Metab. 1999; 84: 3666-3672
        • Desbuquois B.
        • Aurbach G.D.
        Use of polyethylene glycol to separate free and antibody-bound peptide hormones in radioimmunoassays.
        J. Clin. Endocrinol. Metab. 1971; 33: 732-738
        • Moorjani S.
        • Dupont A.
        • Labrie F.
        • Lupien P.J.
        • Brun D.
        • Gagné C.
        • et al.
        Increase in plasma high-density lipoprotein concentration following complete androgen blockage in men with prostatic carcinoma.
        Metabolism. 1987; 36: 244-250
        • Burstein M.
        • Samaille J.
        Sur un dosage rapide du cholestérol lié aux β-lipoprotéines du sérum.
        Clin. Chim. Acta. 1960; 34: 1345-1353
        • Gidez L.I.
        • Miller G.J.
        • Burstein M.
        • Slage S.
        • Eder H.A.
        Separation and quantitation of subclasses of human plasma high density lipoproteins by a simple precipitation procedure.
        J. Lipid Res. 1982; 23: 1206-1223
        • Laurell C.B.
        Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies.
        Anal. Biochem. 1966; 15: 45-52
      4. Nilsson-Ehle P, Ekman R, Specific assays for lipoprotein lipase and hepatic lipase activities of post-heparin plasma. In: Peeters H, editor. Protides of biological fluids. Oxford: Permagon Press; 1978.

        • Tikkanen M.J.
        • Nikkilä E.A.
        Regulation of hepatic lipase and serum lipoproteins by sex steroids.
        Am. Heart J. 1987; 113: 562-567
        • Sorva R.
        • Kuusi T.
        • Taskinen M.R.
        • Perheentupa J.
        • Nikkilä E.A.
        Testosterone substitution increases the activity of lipoprotein lipase and hepatic lipase in hypogonadal males.
        Atherosclerosis. 1988; 69: 191-197
        • Matthews K.A.
        • Meilahn E.
        • Kuller L.H.
        • Kelsey S.F.
        • Caggiula A.W.
        • Wing R.R.
        Menopause and risk factors for coronary heart disease.
        N. Engl. J. Med. 1989; 321: 641-646
        • Longcope C.
        • Herbert P.N.
        • McKinlay S.M.
        • Goldfield S.R.
        The relationship of total and free esrogens and sex hormone-binding globulin with lipoproteins in women.
        J. Clin. Endocrinol. Metab. 1990; 71: 67-72
        • Pugeat M.
        • Moulin P.
        • Cousin P.
        • Fimbel S.
        • Nicolas M.H.
        • Crave J.C.
        • et al.
        Interrelations between sex hormone-binding globulin (SHBG), plasma lipoproteins and cardiovascular risk.
        J. Steroid Biochem. Mol. Biol. 1995; 53: 563-572
        • Panico S.
        • Pisani P.
        • Muti P.
        • Recchione C.
        • Cavalleri A.
        • Totis A.
        • et al.
        Diurnal variation of testosterone and estradiol: a source of bias in comparative studies on breast cancer.
        J. Endocrinol. Invest. 1990; 13: 423-426
        • Yie S.M.
        • Wang R.
        • Zhu Y.X.
        • Liu G.Y.
        • Zheng F.X.
        Circadian variations of serum sex hormone binding globulin binding capacity in normal adult men and women.
        J. Steroid Biochem. 1990; 36: 111-115
        • Hajamor S.
        • Després J.P.
        • Couillard C.
        • Lemieux S.
        • Tremblay A.
        • Prud’homme D.
        • et al.
        Relationship between sex hormone sbinding globulin levels and features of the metabolic syndrome.
        Metabolism. 2003; 52: 724-730
        • Nilsson-Ehle P.
        Human lipoprotein lipase activity: comparison of assay methods.
        Clin. Chim. Acta. 1974; 54: 283-291