Oxidative damage to skeletal muscle following an acute bout of contractile claudication


      The purpose of this study was to determine the extent and sources of oxidative stress within skeletal muscle following an acute bout of contractile claudication. Twenty-four hours after unilateral ligation of the femoral artery, rat hind limbs were stimulated in vivo for 30 min, and force production measured. One-hour post-stimulation, animals were sacrificed and soleus and gastrocnemius muscles removed. There was significant reduction in force in the control limb (sham ligated/stimulated (SS)), while force in the ligated limb (ligated/stimulated (LS)) was reduced by 72%. There was an increase in skeletal muscle lipid hydroperoxides (53 and 47%) and protein carbonyls (57 and 54%) in the soleus and gastrocnemius muscles, respectively, and the muscle wet/dry weight ratio was increased in the gastrocnemius muscles. Total glutathione (GHS) was reduced, while xanthine oxidase (XO) activity and neutrophil levels were increased, in LS compared to SS in both soleus and gastrocnemius muscles. These data suggest that an acute bout of contractile claudication causes significant oxidative damage and edema to skeletal muscle. This is associated with both an increase in the activity of the radical-producing enzyme xanthine oxidase and an increase in activated neutrophils.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Pattwell D.
        • McArdle A.
        • Griffiths R.D.
        • Jackson M.J.
        Measurement of free radical production by in vivo microdialysis during ischemia/reperfusion injury to skeletal muscle.
        Free Radic. Biol. Med. 2001; 30: 979-985
        • Kadambi A.
        • Skalak T.C.
        Role of leukocytes and tissue-derived oxidants in short-term skeletal muscle ischemia–reperfusion injury.
        Am. J. Physiol. Heart Circ. Physiol. 2000; 278: H435-H443
        • Hickman P.
        • Harrison D.K.
        • Hill A.
        • McLaren M.
        • Tamei H.
        • McCollum P.T.
        • et al.
        Exercise in patients with intermittent claudication results in the generation of oxygen derived free radicals and endothelial damage.
        Adv. Exp. Med. Biol. 1994; 361: 565-570
        • Turton E.P.
        • Coughlin P.A.
        • Kester R.C.
        • Scott D.J.
        Exercise training reduces the acute inflammatory response associated with claudication.
        Eur. J. Vasc. Endovasc. Surg. 2002; 23: 309-316
        • Silvestro A.
        • Scopacasa F.
        • Oliva G.
        • de Cristofaro T.
        • Iuliano L.
        • Brevetti G.
        Vitamin C prevents endothelial dysfunction induced by acute exercise in patients with intermittent claudication.
        Atherosclerosis. 2002; 165: 277-283
        • Gute D.C.
        • Ishida T.
        • Yarimizu K.
        • Korthuis R.J.
        Inflammatory responses to ischemia and reperfusion in skeletal muscle.
        Mol. Cell. Biochem. 1998; 179: 169-187
        • Hickey N.C.
        • Hudlicka O.
        • Simms M.H.
        Claudication induces systemic capillary endothelial swelling.
        Eur. J. Vasc. Surg. 1992; 6: 36-40
        • Hickey N.C.
        • Hudlicka O.
        • Gosling P.
        • Shearman C.P.
        • Simms M.H.
        Intermittent claudication incites systemic neutrophil activation and increased vascular permeability.
        Br. J. Surg. 1993; 80: 181-184
        • Dodd S.L.
        • Vrabas I.S.
        • Stetson D.S.
        Effects of intermittent ischemia on contractile properties and myosin isoforms of skeletal muscle.
        Med. Sci. Sports Exerc. 1998; 30: 850-855
        • Seifert F.C.
        • Banker M.
        • Lane B.
        • Bagge U.
        • Anagnostopoulos C.E.
        An evaluation of resting arterial ischemia models in the rat hind limb.
        J. Cardiovasc. Surg. (Torino). 1985; 26: 502-508
        • Angersbach D.
        • Jukna J.J.
        • Nicholson C.D.
        • Ochlich P.
        • Wilke R.
        The effect of short-term and long-term femoral artery ligation on rat calf muscle oxygen tension, blood flow, metabolism and function.
        Int. J. Microcirc. Clin. Exp. 1988; 7: 15-30
        • Reznick A.Z.
        • Packer L.
        Oxidative damage to proteins: spectrophotometric method for carbonyl assay.
        Methods Enzymol. 1994; 233: 357-363
        • Hermes-Lima M.
        • Willmore W.G.
        • Storey K.B.
        Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation.
        Free Radic. Biol. Med. 1995; 19: 271-280
        • Allan G.
        • Bhattacherjee P.
        • Brook C.D.
        • Read N.G.
        • Parke A.J.
        Myeloperoxidase activity as a quantitative marker of polymorphonuclear leukocyte accumulation into an experimental myocardial infarct—the effect of ibuprofen on infarct size and polymorphonuclear leukocyte accumulation.
        J. Cardiovasc. Pharmacol. 1985; 7: 1154-1160
        • Smith J.K.
        • Grisham M.B.
        • Granger D.N.
        • Korthuis R.J.
        Free radical defense mechanisms and neutrophil infiltration in postischemic skeletal muscle.
        Am. J. Physiol. 1989; 256: H789-H793
        • Smith J.K.
        • Carden D.L.
        • Korthuis R.J.
        Role of xanthine oxidase in postischemic microvascular injury in skeletal muscle.
        Am. J. Physiol. 1989; 257: H1782-H1789
        • Edwards A.T.
        • Blann A.D.
        • Suarez-Mendez V.J.
        • Lardi A.M.
        • McCollum C.N.
        Systemic responses in patients with intermittent claudication after treadmill exercise.
        Br. J. Surg. 1994; 81: 1738-1741
        • Khaira H.S.
        • Nash G.B.
        • Bahra P.S.
        • Sanghera K.
        • Gosling P.
        • Crow A.J.
        • et al.
        Thromboxane and neutrophil changes following intermittent claudication suggest ischaemia-reperfusion injury.
        Eur. J. Vasc. Endovasc. Surg. 1995; 10: 31-35
        • Grisotto P.C.
        • dos Santos A.C.
        • Coutinho-Netto J.
        • Cherri J.
        • Piccinato C.E.
        Indicators of oxidative injury and alterations of the cell membrane in the skeletal muscle of rats submitted to ischemia and reperfusion.
        J. Surg. Res. 2000; 92: 1-6
        • Bulteau A.L.
        • Lundberg K.C.
        • Humphries K.M.
        • Sadek H.A.
        • Szweda P.A.
        • Friguet B.
        • et al.
        Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion.
        J. Biol. Chem. 2001; 276: 30057-30063
        • Lesnefsky E.J.
        • Dauber I.M.
        • Horwitz L.D.
        Myocardial sulfhydryl pool alterations occur during reperfusion after brief and prolonged myocardial ischemia in vivo.
        Circ. Res. 1991; 68: 605-613
        • Sirsjo A.
        • Kagedal B.
        • Arstrand K.
        • Lewis D.H.
        • Nylander G.
        • Gidlof A.
        Altered glutathione levels in ischemic and postischemic skeletal muscle: difference between severe and moderate ischemic insult.
        J. Trauma. 1996; 41: 123-128
        • Khaira H.S.
        • Maxwell S.R.
        • Shearman C.P.
        Antioxidant consumption during exercise in intermittent claudication.
        Br. J. Surg. 1995; 82: 1660-1662
        • Appell H.J.
        • Duarte J.A.
        • Gloser S.
        • Remiao F.
        • Carvalho F.
        • Bastos M.L.
        • et al.
        Administration of tourniquet. II. Prevention of postischemic oxidative stress can reduce muscle edema.
        Arch. Orthop. Trauma Surg. 1997; 116: 101-105
        • Linder N.
        • Rapola J.
        • Raivio K.O.
        Cellular expression of xanthine oxidoreductase protein in normal human tissues.
        Lab. Invest. 1999; 79: 967-974
        • Hellsten Y.
        • Frandsen U.
        • Orthenblad N.
        • Sjodin B.
        • Richter E.A.
        Xanthine oxidase in human skeletal muscle following eccentric exercise: a role in inflammation.
        J. Physiol. 1997; 498: 239-248
        • Vina J.
        • Gimeno A.
        • Sastre J.
        • Desco C.
        • Asensi M.
        • Pallardo F.V.
        • et al.
        Mechanism of free radical production in exhaustive exercise in humans and rats role of xanthine oxidase and protection by allopurinol.
        IUBMB Life. 2000; 49: 539-544
        • Seekamp A.
        • Mulligan M.S.
        • Till G.O.
        • Ward P.A.
        Requirements for neutrophil products and l-arginine in ischemia–reperfusion injury.
        Am. J. Pathol. 1993; 142: 1217-1226
        • Kling D.
        • Holzschuh T.
        • Strohschneider T.
        • Betz E.
        Enhanced endothelial permeability and invasion of leukocytes into the artery wall as initial events in experimental arteriosclerosis.
        Int. Angiol. 1987; 6: 21-28
        • Stringer M.D.
        • Gorog P.G.
        • Freeman A.
        • Kakkar V.V.
        Lipid peroxides and atherosclerosis.
        BMJ. 1989; 298: 281-284