Cytotoxic cellular cholesterol is selectively removed by apoA-I via ABCA1

  • Ginny Kellner-Weibel
    Corresponding author. Tel.: +1-215-590-0595; fax: +1-215-590-0583.
    Division of Gasteroenterology and Nutrition, Abramson Research Center, Suite 302, The Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, 3615 Civic Center Blvd., Philadelphia, PA 19104-8651, USA
    Search for articles by this author
  • Steven J. Luke
    Division of Gasteroenterology and Nutrition, Abramson Research Center, Suite 302, The Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, 3615 Civic Center Blvd., Philadelphia, PA 19104-8651, USA
    Search for articles by this author
  • George H. Rothblat
    Division of Gasteroenterology and Nutrition, Abramson Research Center, Suite 302, The Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, 3615 Civic Center Blvd., Philadelphia, PA 19104-8651, USA
    Search for articles by this author


      Excess intracellular free cholesterol (FC) is cytotoxic. This study examines prevention of FC-induced cytotoxicity in J774 macrophage foam cells by incubation with apolipoprotein AI (apoA-I). J774 were cholesterol enriched using acetylated low-density lipoprotein and FC/phospholipid (PL) dispersions. Treatment with an acyl coenzyme-A:cholesterol acyltransferase (ACAT) inhibitor, in the absence of extracellular acceptors, produced hydrolysis of stored esterified cholesterol (EC) and FC-induced cytotoxicity. Incubation of cells with ACAT inhibitor plus apoA-I resulted in FC efflux (0.39±0.02%/h) along with a reduction in cytotoxicity (26.30±5.80%), measured by adenine release. Small unilamellar vesicles (SUV) caused greater FC efflux (0.53±0.02%/h, P=0.001), but a modest reduction in cytotoxicity (8.40±2.70%, P=0.008). Co-incubation of ACAT inhibitor plus the cholesterol transport inhibitor U18666A or the antioxidant Probucol reduced efflux to apoA-I, but not to SUV. Pre-treatment of J774 foam cells with CTP-cAMP upregulates hormone sensitive lipase (HSL) and further upregulates ATP binding cassette A1 (ABCA1). Using mouse serum as a cholesterol acceptor, CTP-cAMP caused greater protection against FC-induced cytotoxicity compared to cells without pre-treatment, suggesting a role of ABCA1 in removal of cytotoxic FC. We conclude that a cytotoxic pool of FC is located in the plasma membrane, is readily available for efflux to apoA-I, and removal of cytotoxic cholesterol may involve ABCA1.


      FC (unesterified (free) cholesterol), EC (esterified cholesterol), ACAT (acyl CoA:cholesterol acyltransferase), PBS (phosphate buffered saline), BSA (bovine serum albumin), acLDL (acetylated LDL), PL (phospholipid), SUV (small unilamellar vesicles), ABCA1 (ATP binding cassette A1), SR-BI (scavenger receptor BI), CME (cholesteryl methyl ether)


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Jerome W.G.
        • Lewis J.C.
        Early atherogenesis in the white carneau pigeon. III. Lipid accumulation in nascent foam cells.
        Am. J. Pathol. 1987; 128: 253-264
        • Rosenfeld M.E.
        • Tsukada T.
        • Chait A.
        • Bierman E.L.
        • Gown A.M.
        • Ross R.
        Fatty streak expansion and maturation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits.
        Arteriosclerosis. 1987; 7: 24-34
        • Shio H.
        • Haley N.J.
        • Fowler S.
        Characterization of Lipid-laden aortic cells from cholesterol-fed rabbits. II. Morphometric analysis of lipid-filled lysosomes and lipid droplets in aortic cell population.
        Lab. Invest. 1978; 39: 390-397
        • Guyton J.R.
        • Klemp K.F.
        • Black B.L.
        • Bocan T.M.A.
        Extracellular lipid deposition in atherosclerosis.
        Eur. Heart J. 1990; 11: 20-28
        • Ball R.Y.
        • Stowers E.C.
        • Burton J.H.
        • Cary N.R.B.
        • Skepper J.N.
        • Mitchinson M.J.
        Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma.
        Atherosclerosis. 1995; 114: 45-54
        • Small D.M.
        Progression and regression of atherosclerotic lesions.
        Arteriosclerosis. 1988; 8: 103-129
        • Tabas I.
        • Marathe S.
        • Keesler G.A.
        • Beatini N.
        • Shiratori Y.
        Evidence that the initial up-regulation of phosphatidylcholine biosynthesis in free cholesterol-loaded macrophages is an adaptive response that prevents cholesterol-induced cellular necrosis—proposed role of an eventual failure of this response in foam cell necrosis in advanced atherosclerosis.
        J. Biol. Chem. 1996; 271: 22773-22781
        • Kellner-Weibel G.
        • Geng Y.J.
        • Rothblat G.H.
        Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane.
        Atherosclerosis. 1999; 146: 309-319
        • Kellner-Weibel G.
        • Yancey P.G.
        • Jerome W.G.
        • Walser T.
        • Mason R.P.
        • Phillips M.C.
        • et al.
        Crystallization of free cholesterol in model macrophage foam cells.
        Arterioscler. Thromb. Vasc. Biol. 1999; 19: 1891-1898
        • Oram J.F.
        ATP-binding cassette transporter A1 and cholesterol trafficking.
        Curr. Opin. Lipidol. 2002; 13: 373-381
        • Williams D.L.
        • Connelly M.A.
        • Temel R.E.
        • Swanakar S.
        • Phillips M.C.
        • de la Llera-Moya M.
        • et al.
        Scavenger receptor BI and cholesterol trafficking.
        Curr. Opin. Lipidol. 1999; 10: 329-339
        • Arbogast L.Y.
        • Rothblat G.H.
        • Leslie M.H.
        • Cooper R.A.
        Cellular cholesterol ester accumulation induced by free cholesterol-rich lipid dispersions.
        Proc. Natl. Acad. Sci. 1976; 73: 3680-3684
        • Hatch F.T.
        • Lees R.S.
        Practical methods for plasma lipoprotein analysis.
        Adv. Lipid Res. 1968; 6: 1-68
        • Basu S.K.
        • Goldstein J.L.
        • Anderson R.G.W.
        • Brown M.S.
        Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts.
        Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 3178-3182
        • Gillotte K.L.
        • Davidson W.S.
        • Lund-Katz S.
        • Rothblat G.H.
        • Phillips M.C.
        Apolipoprotein A-I structural modification and functionality of reconstituted high density lipoprotein particles in cellular cholesterol efflux.
        J. Biol. Chem. 1996; 271: 23792-23798
        • Jian B.
        • de la Llera Moya M.
        • Ji Y.
        • Wang N.
        • Phillips M.C.
        • Swaney J.B.
        • et al.
        Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors.
        J. Biol. Chem. 1998; 273: 5599-5606
        • Warner G.J.
        • Stoudt G.
        • Bamberger M.
        • Johnson W.J.
        • Rothblat G.H.
        Cell toxicity induced by inhibition of acyl coenzyme A cholesterol acyltransferase and accumulation of unesterified cholesterol.
        J. Biol. Chem. 1995; 270: 5772-5778
        • Markwell M.A.K.
        • Haas S.M.
        • Bieber L.L.
        • Tolbert N.E.
        A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples.
        Anal. Biochem. 1978; 87: 206-210
        • Sakr S.W.
        • Williams D.L.
        • Stoudt G.W.
        • Phillips M.C.
        • Rothblat G.H.
        Induction of cellular cholesterol efflux to lipid-free apolipoprotein A-I by cAMP.
        Biochim. Biophys. Acta. 1999; 1438: 85-98
        • Bernard D.W.
        • Rodriguez A.
        • Rothblat G.H.
        • Glick J.M.
        cAMP stimulates cholesteryl ester clearance to high density lipoproteins in J774 macrophages.
        J. Biol. Chem. 1991; 266: 710-716
        • Bortnick A.E.
        • Rothblat G.H.
        • Stoudt G.
        • Hoppe K.L.
        • Royer L.J.
        • McNeish J.
        • et al.
        The correlation of ABC1 mRNA levels with cholesterol efflux from various cell lines.
        J. Biol. Chem. 2000; 275: 28634-28640
        • Feng B.
        • Tabas I.
        ABCA1-mediated cholesterol efflux is defective in free cholesterol-loaded macrophages: mechanism involves enhanced ABCA1 degradation in a process requiring full NPC1 activity.
        J. Biol. Chem. 2002; 277: 43271-43280
        • Brown M.S.
        • Ho Y.K.
        • Goldstein J.L.
        The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters.
        J. Biol. Chem. 1980; 255: 9344-9352
        • Ho Y.K.
        • Brown M.S.
        • Goldstein J.L.
        Hydrolysis and excretion of cytoplasmic cholesteryl esters by macrophages: stimulation by high density lipoprotein and other agents.
        J. Lipid Res. 1980; 21: 391-398
        • Shiratori Y.
        • Houweling M.
        • Zha X.
        • Tabas I.
        Stimulation of CTP:phosphocholine cytidylytransferase by free cholesterol loading of macrophages involves signaling through protein dephosphorylation.
        J. Biol. Chem. 1995; 270: 29894-29903
        • Yao P.M.
        • Tabas I.
        Free cholesterol loading of macrophages induces apoptosis involving the fas pathway.
        J. Biol. Chem. 2000; 275: 23807-23813
        • de la Llera-Moya M.
        • Rothblat G.H.
        • Connelly M.A.
        • Kellner-Weibel G.
        • Sakr S.W.
        • Phillips M.C.
        • et al.
        Scavenger receptor BI (SR-BI) mediates free cholesterol flux independently of HDL tethering to the cell surface.
        J. Lipid Res. 1999; 40: 575-580
        • Yancey P.G.
        • Bortnick A.E.
        • Kellner-Weibel G.
        • de la Llera-Moya M.
        • Phillips M.C.
        • Rothblat G.H.
        Importance of different pathways of cellular cholesterol efflux.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 712-719
        • Tall A.R.
        • Coster P.
        • Wang N.
        Regulation and mechanisms of macrophage cholesterol efflux.
        J. Clin. Invest. 2002; 110: 899-904
        • Mendez A.J.
        • Lin G.
        • Wade D.P.
        • Lawn R.M.
        • Oram J.F.
        Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway.
        J. Biol. Chem. 2001; 276: 3158-3166
        • Drobnik W.
        • Borsukova H.
        • Bottcher A.
        • Pfeiffer A.
        • Liebisch G.
        • Schutz G.J.
        • et al.
        Apo AI/ABCA1-dependent and HDL3-mediated lipid efflux from compositionally distinct cholesterol-based microdomains.
        Traffic. 2002; 3: 268-278
        • Neufeld E.B.
        • Remaley A.T.
        • Demosky S.J.
        • Stonik J.A.
        • Cooney A.M.
        • Comly M.
        • et al.
        Cellular localization and trafficking of the human ABCA1 transporter.
        J. Biol. Chem. 2001; 276: 27584-27590
        • Vaughan A.M.
        • Oram J.F.
        ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions.
        J Lipid Res. 2003; 44: 1373-1380
        • Yokoyama S.
        Apolipoprotein-mediated cellular cholesterol efflux.
        Biochim. Biophys. Acta. 1998; 1392: 1-15
        • Oram J.F.
        • Yokoyama S.
        Apolipoprotein-mediated removal of cellular cholesterol and phospholipids.
        J. Lipid Res. 1996; 37: 2473-2491
        • Wellington C.L.
        • Walker E.K.Y.
        • Suarez A.
        • Kwok A.
        • Bissada N.
        • Singaraja R.
        • et al.
        ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation.
        Lab. Invest. 2002; 82: 273-283
        • Underwood K.W.
        • Jacobs N.L.
        • Howley A.
        • Liscum L.
        Evidence for a cholesterol transport pathway from lysosomes to endoplasmic reticulum that is independent of the plasma membrane.
        J. Biol. Chem. 1998; 273: 4266-4274
        • Underwood K.W.
        • Andemariam B.
        • McWilliams G.L.
        • Liscum L.
        Quantitative analysis of hydrophobic amine inhibition of intracellular cholesterol transport.
        J. Lipid Res. 1996; 37: 1556-1568
        • Lange Y.
        • Ye J.
        • Chin J.
        The fate of cholesterol exiting lysosomes.
        J. Biol. Chem. 1997; 272: 17018-17022
        • Watari H.
        • Blanchette-Mackie E.J.
        • Dwyer N.K.
        • Sun G.
        • Glick J.M.
        • Patel S.
        • et al.
        NPC1-containing compartment of human granulosa-lutein cells: a role in the intracellular trafficking of cholesterol supporting steroidogenisis.
        Exp. Cell Res. 1996; 255: 56-66
        • Liscum L.
        Niemann-pick type C mutations cause lipid traffic jam.
        Traffic. 2000; 1: 218-225
        • Liscum L.
        • Faust J.R.
        The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-β□-[2-(diethylamino)ethoxy]androst-5-17-one.
        J. Biol. Chem. 1989; 264: 11796-11806
        • Naseem S.M.
        • Heald F.P.
        Cytotoxicity of cholesterol oxides and their effects on cholesterol metabolism in cultured human aortic smooth muscle cells.
        Int. J. Biochem. 1987; 14: 71-84
        • Kellner-Weibel G.
        • de la Llera-Moya M.
        • Connelly M.A.
        • Stoudt G.
        • Christian A.E.
        • Haynes M.P.
        • et al.
        Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution.
        Biochemistry. 2000; 39: 221-229