Advertisement

Phenotype-dependent and -independent actions of rosuvastatin on atherogenic lipoprotein subfractions in hyperlipidaemia

      Abstract

      This randomised, double-blind, placebo-controlled crossover study evaluated the effects of rosuvastatin (40 mg/day for 8 weeks) on atherogenic apolipoprotein B-containing lipoprotein subfractions. Subjects, recruited based on raised plasma triglyceride (TG) or low-density lipoprotein cholesterol (LDL-C), were divided into normotriglyceridaemic (NTG, n=13; TG<2.0 mmol/l) and hypertriglyceridaemic (HTG, n=16; TG≥2.0 mmol/l) groups. Similar reductions on rosuvastatin were observed for both groups in LDL-C (NTG −60%; HTG −56%), apoB (both −49%), intermediate-density lipoprotein (NTG −57%; HTG −54%) and LDL circulating mass (NTG −52%, HTG −58%) (all P<0.001 versus placebo), i.e., these changes were phenotype independent. Phenotype dependency in response was observed in HTG relative to NTG in concentration of small dense LDL (LDL-III) (NTG −44%, P=NS; HTG −69%, P<0.001), very-low-density lipoprotein1 (NTG −18%, P=NS; HTG 46%, P<0.01), and remnant-like particle cholesterol (NTG −31%, P=NS; HTG −48%, P<0.05). Rosuvastatin reduced cholesteryl ester transfer protein (CETP) by 33% in NTG and 37% in HTG (both P<0.001); a reduction in cholesteryl ester transfer activity (−59%, P<0.001) was observed in HTG only. Rosuvastatin therefore, in addition to lowering LDL and apoB-concentrations, largely corrected the TG and LDL abnormalities in subjects who had the propensity to develop the atherogenic lipoprotein phenotype.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Shepherd J.
        The statin era: in search of the ideal lipid regulating agent.
        Heart. 2001; 85: 259-264
        • Austin M.A.
        • King M.-C.
        • Vranizan K.M.
        • Krauss R.M.
        Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary heart disease.
        Circulation. 1990; 82: 495-506
        • Packard C.J.
        • Shepherd J.
        Lipoprotein heterogeneity and apolipoprotein B metabolism.
        Arterioscler Thromb Vasc Biol. 1997; 12: 3542-3556
        • Stein E.A.
        • Love M.
        • Laskarzewski P.
        Comparison of statins in hypertriglyceridaemia.
        Am. J. Cardiol. 1998; 81: 66B-69B
        • Huff M.W.
        • Burnett J.R.
        3-Hydroxy-3-methylglutaryl coenzyme A inhibitors and hepatic apolipoprotein B secretion.
        Curr. Opin. Lipidol. 1997; 8: 138-145
        • Guérin M.
        • Lassel T.S.
        • Le Goff W.
        • Farnier M.
        • Chapman M.J.
        Action of atorvastatin in combined hyperlipidaemia. Preferential reduction of cholesteryl ester transfer from HDL to VLDL1 particles.
        Arterioscler Thromb Vasc. Biol. 2000; 20: 189-197
        • Guérin M.
        • Dolphin P.J.
        • Talussot C.
        • Gardette J.
        • Berthézène F.
        • Chapman M.J.
        Pravastatin modulates cholesteryl ester transfer from HDL to apoB-containing lipoproteins and lipoprotein subspecies profile in familial hypercholesterolemia.
        Arterioscler Thromb Vasc. Biol. 1995; 15: 1359-1368
        • de Sauvage Nolting P.R.
        • Twickler M.B.
        • Dallinga-Thie G.M.
        • Buirma R.J.
        • Hutten B.A.
        • Kastelein J.J.
        Elevated remnant-like particles in heterozygous familial hypercholesterolemia and response to statin therapy.
        Circulation. 2002; 106: 788-792
        • Gaw A.
        • Packard C.J.
        • Murray E.F.
        • Lindsay G.M.
        • Griffin B.A.
        • Caslake M.J.
        • et al.
        Effects of simvastatin on apoB metabolism and LDL subfraction distribution.
        Arterioscler Thromb. 1993; 13: 170-189
        • Geiss H.C.
        • Otto C.
        • Schwandt P.
        • Parhofer K.G.
        Effect of atorvastatin on low-density lipoprotein subtypes in patients with different forms of hyperlipoproteinemia and control subjects.
        Metabolism. 2001; 50: 983-989
        • Forster L.F.
        • Stewart G.
        • Bedford D.
        • Stewart J.P.
        • Rogers E.
        • Shepherd J.
        • et al.
        Influence of atorvastatin and simvastatin on apolipoprotein B metabolism in moderate combined hyperlipidaemic subjects with low VLDL and LDL fractional clearance rates.
        Atherosclerosis. 2002; 164: 129-145
        • Frost R.J.
        • Otto C.
        • Geiss H.C.
        • Schwandt P.
        • Parhofer K.G.
        Effects of atorvastatin versus fenofibrate on lipoprotein profiles and low-density lipoprotein subfraction distribution, and hemorrheologic parameters in type 2 diabetes mellitus with mixed hyperlipoproteinemia.
        Am. J. Cardiol. 2001; 87: 44-48
        • Guerin M.
        • Egger P.
        • Soudant C.
        • Le Goff W.
        • van Tol A.
        • Dupuis R.
        • et al.
        Dose-dependent action of atorvastatin in type IIB hyperlipidaemia: preferential and progressive reduction of atherogenic apoB-containing lipoprotein subclasses (VLDL-2, IDL, small dense LDL) and stimulation of cellular cholesterol efflux.
        Atherosclerosis. 2002; 163: 287-296
      1. Scientific Steering Committee on behalf of the Simon Broome Register Group. Risk of fatal coronary heart disease in familial hypercholesterolemia. Br Med J 1991;303(6807):893–6.

      2. Lipid Research Clinics Program. Manual of laboratory operations: lipid and lipoprotein analysis. Bethesda, MD: US Government Printing Office 1974, US Department of Health, Education and Welfare Publication No. NIH 75–628.

      3. Lindgren FT, Jensen LC, Hatch FT. The isolation and quantitation analysis of serum lipoproteins. In: Nelson GJ, editor. Blood lipids and lipoproteins: quantitation, composition, and metabolism. New York: Wiley-Interscience; 1972. p. 181–274.

        • Griffin B.A.
        • Caslake M.J.
        • Yip B.
        • Tait G.W.
        • Packard C.J.
        • Shepherd J.
        Rapid isolation of low density lipoprotein (LDL) subfractions from plasma by density gradient ultracentrifugation.
        Atherosclerosis. 1990; 83: 59-67
        • Mezdour H.
        • Kora I.
        • Parra H.J.
        • Tartar A.
        • Marcel Y.L.
        • Fruchart J.C.
        Two-site enzyme immunoassay of cholesteryl ester transfer protein with monoclonal and oligoclonal antibodies.
        Clin. Chem. 1994; 40: 593-597
        • Channon K.M.
        • Clegg R.J.
        • Bhatnagar D.
        • Ishola M.
        • Arrol S.
        • Durrington P.N.
        Investigation of lipid transfer in human serum leading to the development of an isotopic method for the determination of endogenous cholesterol esterification and transfer.
        Atherosclerosis. 1990; 80: 217-226
      4. Fielding CJ. Determination and clinical significance of cholesteryl ester transfer protein. In: Rifai N, Warnick GR, Dominiczak MH, editors. Handbook of lipoprotein testing. 2nd ed. Washington: American Association for Clinical Chemistry Press; 2000. p. 499–505.

        • Griffin B.A.
        • Freeman D.J.
        • Tait G.W.
        • Thomson J.
        • Caslake M.J.
        • Packard C.J.
        • et al.
        Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small, dense LDL to coronary heart disease.
        Atherosclerosis. 1994; 106: 241-253
        • Brinton E.A.
        • Eisenberg S.
        • Breslow J.L.
        Increased apo A-I and apo A-II fractional catabolic rate in patients with low high density lipoprotein-cholesterol levels with or without hypertriglyceridaemia.
        J. Clin. Invest. 1991; 87: 536-544
        • Geiss H.C.
        • Schwandt P.
        • Parhofer K.G.
        Influence of simvastatin on LDL-subtypes in patients with heterozygous familial hypercholesterolemia and in patients with diabetes mellitus and mixed hyperlipoproteinemia.
        Exp. Clin. Endocrinol. Diabetes. 2002; 110: 182-187
        • Otvos J.D.
        • Shalaurova I.
        • Freedman D.S.
        • Rosenson R.S.
        Effects of pravastatin treatment on lipoprotein subclass profiles and particle size in the PLAC-I trial.
        Atherosclerosis. 2002; 160: 41-48
        • Pontrelli L.
        • Parris W.
        • Adeli K.
        • Cheung R.C.
        Atorvastatin treatment beneficially alters the lipoprotein profile and increases low-density lipoprotein particle diameter in patients with combined dyslipidaemia and impaired fasting glucose/type 2 diabetes.
        Metabolism. 2002; 51: 334-342
        • Tan C.E.
        • Forster L.
        • Caslake M.J.
        • Bedford D.
        • Watson T.D.G.
        • McConnell M.
        • et al.
        Relations between plasma lipids and postheparin plasma lipases and VLDL and LDL subfraction patterns in normolipemic men and women.
        Arterioscler Thromb Vasc Biol. 1995; 15: 1839-1848
        • Gianturco S.H.
        • Bradley W.A.
        • Nozaki S.
        • Vega G.L.
        • Grundy S.M.
        Effects of lovastatin on the levels, structure, and atherogenicity of VLDL in patients with moderate hypertriglyceridaemia.
        Arterioscler Thromb. 1993; 13: 472-481
        • Gauthier B.
        • Robb M.
        • Gaudet F.
        • Ginsburg G.S.
        • McPherson R.
        Characterization of a cholesterol response element (CRE) in the promoter of the cholesteryl ester transfer protein gene: functional role of the transcription factors SREBP-1a. -2, and YY1.
        J. Lipid Res. 1999; 40: 1284-1293