Advertisement

Metabolic syndrome best defines the multivariate distribution of blood variables in postinfarction patients

      Abstract

      The hypothesis was tested that metabolic syndrome (MS) plays a leading role in approximating the multivariate distribution of thrombogenic and metabolic blood variables in a population of postinfarction patients. The multivariate statistical technique of factor analysis was used to determine blood variable clustering 2 months after myocardial infarction. Five clusters resulted in two separate independent factors, dyslipidemia and metabolic, reflecting MS and the remaining interpreted as cholesterol–lipoprotein, vascular-inflammatory, and coagulation. All five factors accounted for 55% of total variance with MS-associated factors accounting for 20% and individual factor contributions as follows: 11.6, 8.6, 12.9, 11.9, and 9.6%, respectively. There were no interactions of metabolic variables with thrombogenic variables or CRP in any factor. Results of subgroup analysis in males and females and in patients on and not on statins were all similar to the total group. We conclude there is no interaction of variables of MS or cholesterol–lipoprotein factors with those of thrombogenic factors. This independence yields the potential for use of factors in evaluating CVD risk. Further, the importance of MS in this group of postinfarction patients is emphasized, as the largest contribution to total variance was from MS factors, meaning that these variables best approximate the original multivariate distribution.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001;285(19):101–12.

        • Edwards K.L.
        • Austin M.A.
        • Newman B.
        • Mayer E.
        • Krauss R.M.
        • Selby J.V.
        Multivariate analysis of the insulin resistance syndrome in women.
        Arterioscler Thromb. Vasc. Biol. 1994; 14: 1940-1945
        • Austin M.A.
        • Mykkanen L.
        • Kuusisto J.
        • Edwards K.L.
        • Nelson C.
        • Haffner S.M.
        • et al.
        Prospective study of small LDLs as a risk factor for non-insulin dependent Diabetes mellitus in elderly men and women.
        Circulation. 1995; 92: 1770-1778
        • Donahue R.P.
        • Bean J.A.
        • Donahue R.D.
        • Goldberg R.B.
        • Prineas R.J.
        Does insulin resistance unite the separate components of the insulin resistance syndrome?.
        Arterioscler Thromb. Vasc. Biol. 1997; 17: 2413-2417
        • Edwards K.L.
        • Burchfiel C.M.
        • Sharp D.S.
        • Curb J.D.
        • Rodriguez B.L.
        • Fujimoto W.Y.
        • et al.
        Factors of the insulin resistance syndrome in nondiabetic and diabetic elderly Japanese–American men.
        Am. J. Epidemiol. 1998; 147: 441-447
        • Leyva F.
        • Godsland I.F.
        • Ghatei M.
        • Proudler A.J.
        • Aldis S.
        • Walton C.
        • et al.
        Hyperleptinemia as a component of a metabolic syndrome of cardiovascular risk.
        Arterioscler Thromb. Vasc. Biol. 1998; 18: 928-933
        • Gray R.S.
        • Fabsitz R.R.
        • Cowan L.D.
        • Lee E.T.
        • Howard B.V.
        • Savage P.J.
        Risk factor clustering in the insulin resistance syndrome.
        Am. J. Epidemiol. 1998; 148: 869-878
        • Lempiainen P.
        • Mykkanen L.
        • Pyorala K.
        • Laakso M.
        • Kuusisto J.
        Insulin resistance syndrome predicts coronary heart disease events in elderly nondiabetic men.
        Circulation. 1999; 100: 123-128
        • Sakkinen P.A.
        • Wahl P.
        • Cushman M.
        • Lewis M.R.
        • Tracy R.P.
        Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance Syndrome.
        Am. J. Epidemiol. 2000; 152: 897-907
        • Pyorala M.
        • Miettinen H.
        • Halonen P.
        • Laakso M.
        • Pyorala K.
        Insulin resistance syndrome predicts the risk of coronary heart disease and stroke in healthy middle-aged men.
        Arterioscler Thromb Vasc Biol. 2000; 20: 538-544
        • Austin M.A.
        • Rodriguez B.L.
        • McKnight B.
        • McNeely M.J.
        • Edwards K.L.
        • Curb J.D.
        • et al.
        Low-density lipoprotein particle size, triglycerides, and high-density lipoprotein cholesterol as risk factors for coronary heart disease in older Japanese–American men.
        Am. J. Cardiol. 2000; 86: 412-416
        • Kuusisto J.
        • Mykkanen L.
        • Lempiainen P.
        • Laakso M.
        Insulin resistance syndrome predicts coronary heart disease events in elderly type 2 diabetic men.
        Diabetes Care. 2001; 24: 1629-1633
        • Anderson P.J.
        • Critchley J.A.J.H.
        • Chan J.C.N.
        • Cockram C.S.
        • Lee Z.S.K.
        • Thomas G.N.
        • et al.
        Factor analysis of the metabolic syndrome: obesity versus insulin resistance as the central abnormality.
        Int. J. Obesity. 2001; 25: 1782-1788
        • Austin M.A.
        • Edwards K.L.
        Small, dense low density lipoproteins, the insulin resistance syndrome and noninsulin-dependent diabetes.
        Curr Opin Lipidol. 1996; 7: 167-171
        • Meigs J.B.
        Invited commentary: insulin resistance syndrome? Syndrome X? Multiple metabolic syndrome? A syndrome at all? Factor analysis reveals patterns in the fabric of correlated metabolic risk factors.
        Am. J. Epidemiol. 2000; 152: 908-911
        • Moss A.J.
        • Goldstein R.E.
        • Marder V.J.
        • Sparks C.E.
        • Oakes K.
        • Greenberg H.
        • et al.
        Thrombogenic factors and recurrent coronary events.
        Circulation. 1999; 99: 2517-2522
        • Harb T.S.
        • Zareba W.
        • Moss A.J.
        • Ridker P.M.
        • Marder V.J.
        • Rifai N.
        • et al.
        Association of C-reactive protein and serum amyloid a with recurrent coronary events in stable patients after healing of acute myocardial infarction.
        Am. J. Cardiol. 2002; 89: 216-221
        • Rifai N.
        • Tracy R.P.
        • Ridker P.M.
        Clinical efficacy of an automated high-sensitiviy C-reactive protein assay.
        Clin. Chem. 1999; 45: 2136-2141
        • Rainwater D.L.
        • Moore P.H.
        • Shelledy W.R.
        • Dyer T.D.
        Characterization of a composite gradient gel for the electrophoretic separation of lipoproteins.
        J. Lipid Res. 1997; 38: 1261-1266
        • Rainwater D.L.
        Electrophoretic separation of LDL and HDL subclasses.
        Meth Mol. Biol. 1998; 110: 137-151
        • Joliffe I.T.
        • Morgan B.J.T.
        Principal component analysis and exploratory factor analysis.
        Stat Meth. Med. Res. 1992; 1: 69-95
      2. Stevens J. Applied multivariate statistics for the social sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1986. p. 337–72.

        • Rifai N.
        • Ridker P.M.
        High-sensitivity C-reactive protein: a novel and promising marker of coronary heart disease.
        Clin. Chem. 2001; 47: 403-411
        • Libby P.
        • Ridker P.M.
        • Masseri A.
        Inflammation and atherosclerosis.
        Circulation. 2002; 105: 1135-1143
        • Chadarevian R.
        • Bruckert E.
        • Dejager S.
        • Presberg P.
        • Turpin G.
        Relationship between triglycerides and factor VIIc and plasminogen activator inhibitor type-1: lack of threshold value.
        Thromb Res. 1999; 96: 175-182
        • Marckmann P.
        Dietary treatment of thrombogenic disorders related to the metabolic syndrome.
        Br. J. Nutr. 2000; 83: S121-S126
        • Heywood D.M.
        • Mansfield M.W.
        • Grant P.J.
        Factor VII gene polymorphisms, factor VII:C levels and features of insulin resistance in non-insulin-dependent Diabetes Mellitus.
        Thromb Haemost. 1996; 75: 401-406
        • Bastard J.-P.
        • Pieroni L.
        • Hainque B.
        Relationship between plasma plasminogen activator inhibitor 1 and insulin resistance.
        Diabetes Metabol Res. Rev. 2000; 16: 192-201
        • Festa A.
        • D’Agostino R.
        • Mykkanen L.
        • Tracy R.
        • Howard B.V.
        • Haffner S.M.
        Low-density lipoprotein size is inversely related to plasminogen activator inhibitor-1 levels.
        Arterioscler Thromb Vasc. Biol. 1999; 19: 605-610