Advertisement

Chylomicron remnants of various sizes are lowered more effectively by fenofibrate than by atorvastatin in patients with combined hyperlipidemia

      Abstract

      Both atorvastatin and fenofibrate are known to lower postprandial chylomicrons and chylomicron remnants. However, until now it has not been investigated which of the two drugs is more effective in one and the same patient and, secondly, whether these drugs exert different effects on chylomicron remnants of different sizes. To this end 12 patients with mixed hyperlipidemia were treated in a crossover study with 40 mg atorvastatin or with 200 mg micronized fenofibrate once daily for 6 weeks. Oral fat loading was given before and after each treatment. Chylomicron remnants of various sizes were determined by fluorometric determinations of retinyl palmitate after lipoprotein separation by size-exclusion chromatography. As expected, atorvastatin was more effective than fenofibrate on total and LDL-cholesterol (P<0.05). Fenofibrate, in contrast, was more effective on all triglyceride-rich lipoproteins in both the fasting and the postprandial state. The stronger effect of fenofibrate affected not only chylomicrons and VLDL but also chylomicron remnants. It reduced large chylomicron remnants by 66% at 6 h and by 74% at 8 h. The action of atorvastatin was less pronounced, with corresponding reductions of 42 and 65% (P<0.05 only after 8 h). Fenofibrate was even more effective on small chylomicron remnants, yielding reductions of 47, 74, and 66% at 4, 6, and 8 h. Atorvastatin, in contrast, gave reductions of 30 and 26% after 6 and 8 h, the effect reaching statistical significance only after 6 h. Fenofibrate is therefore more effective than atorvastatin in lowering all triglyceride-rich lipoproteins, including large and small chylomicron remnants.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Karpe F.
        Postprandial lipoprotein metabolism and atherosclerosis.
        J. Intern. Med. 1999; 246: 341-355
        • Riccardi G.
        • Rivellese A.A.
        Dietary treatment of the metabolic syndrome—the optimal diet.
        Br. J. Nutr. 2000; 83: S143-S148
        • Cohn J.S.
        Postprandial lipemia: emerging evidence for atherogenicity of remnant lipoproteins.
        Can. J. Cardiol. 1998; 14: 18B-27B
        • Karpe F.
        Postprandial lipemia-effect of lipid-lowering drugs.
        Atheroscler. Suppl. 2002; 3: 41-46
        • Roche H.M.
        • Gibney M.J.
        Effect of long-chain n-3 polyunsaturated fatty acids on fasting and postprandial triacylglycerol metabolism.
        Am. J. Clin. Nutr. 2000; 71: 232S-237S
        • Ito M.K.
        Niacin-based therapy for dyslipidemia: past evidence and future advances.
        Am. J. Manage. Care. 2002; 8: S315-S322
        • Cohn J.S.
        Postprandial lipid metabolism.
        Curr. Opin. Lipidol. 1994; 5: 185-190
        • Cabezas M.C.
        • de Bruin T.W.
        • Kock L.A.
        • Kortlandt W.
        • Van Linde-Sibenius Trip M.
        • Jansen H.
        • et al.
        Simvastatin improves chylomicron remnant removal in familial combined hyperlipidemia without changing chylomicron conversion.
        Metabolism. 1993; 42: 497-503
        • Cianflone K.
        • Bilodeau M.
        • Davignon J.
        • Sniderman A.D.
        Modulation of chylomicron remnant metabolism by a hepatic hydroxymethylglutaryl coenzyme A reductase inhibitor.
        Metabolism. 1990; 39: 274-280
        • Bae J.H.
        • Bassenge E.
        • Lee H.J.
        • Park K.R.
        • Park C.G.
        • Park K.Y.
        • Lee M.S.
        • Schwemmer M.
        Impact of postprandial hypertriglyceridemia on vascular responses in patients with coronary artery disease: effects of ACE inhibitors and fibrates.
        Atherosclerosis. 2001; 158: 165-171
        • Simpson H.S.
        • Williamson C.M.
        • Olivecrona T.
        • Pringle S.
        • Maclean J.
        • Lorimer A.R.
        • Bonnefous F.
        • Bogaievsky Y.
        • Packard C.J.
        • Shepherd J.
        Postprandial lipemia, fenofibrate and coronary artery disease.
        Atherosclerosis. 1990; 85: 193-202
        • Foger B.
        • Drexel H.
        • Hopferwieser T.
        • Miesenbock G.
        • Ritsch A.
        • Lechleitner M.
        • Trobinger G.
        • Patsch J.R.
        Fenofibrate improves postprandial chylomicron clearance in II B hyperlipoproteinemia.
        Clin. Invest. 1994; 72: 294-301
        • Carlson L.A.
        • Aberg H.
        Serum triglycerides—an independent risk factor for myocardial infarction but not for angina pectoris.
        N. Engl. J. Med. 1985; 312: 1127
        • Castelli W.P.
        The triglyceride issue: a view from Framingham.
        Am. Heart J. 1986; 112: 432-437
        • Malhotra H.S.
        • Goa K.L.
        Atorvastatin: an updated review of its pharmacological properties and use in dyslipidaemia.
        Drugs. 2001; 61: 1835-1881
        • Luley C.
        • Baumstark M.W.
        • Wieland H.
        Rapid apolipoprotein E phenotyping by immunofixation in agarose.
        J. Lipid Res. 1991; 32: 880-883
        • Orth M.
        • Wahl S.
        • Hanisch M.
        Clearance of postprandial lipoproteins in normolipemics: role of the apolipoprotein E phenotype.
        Biochim. Biophys. Acta. 1996; 1303: 22-30
        • Orth M.
        • Hanisch M.
        • Kroning G.
        • Porsch-Ozcurumez M.
        • Wieland H.
        • Luley C.
        Fluorometric determination of total retinyl esters in triglyceride-rich lipoproteins.
        Clin. Chem. 1998; 44: 1459-1465
        • Weintraub M.S.
        • Grosskopf I.
        • Rassin T
        • Miller H.
        • Charach G.
        • Rotmensch H.H.
        • Liron M.
        • Rubinstein A.
        • Iaina A.
        Clearance of chylomicron remnants in normolipidaemic patients with coronary artery disease: case control study over three years.
        BMJ. 1996; 312: 936-939
        • Cortner J.A.
        • Coates P.M.
        • Le N.A.
        • Cryer D.R.
        • Ragni M.C.
        • Faulkner A.
        • et al.
        Kinetics of chylomicron remnant clearance in normal and in hyperlipoproteinemic subjects.
        J. Lipid Res. 1987; 28: 195-206
        • Silva K.D.
        • Williams C.M.
        • Lovegrove J.A.
        Use of water-miscible retinyl palmitate as markers of chylomicrons gives earlier peak response of plasma retinyl esters compared with oil-soluble retinyl palmitate.
        Br. J. Nutr. 2001; 86: 427-432
        • Lemieux S.
        • Fontani R.
        • Uffelman K.D.
        • Lewis G.F.
        • Steiner G.
        Apolipoprotein B-48 and retinyl palmitate are not equivalent markers of postprandial intestinal lipoproteins.
        J. Lipid Res. 1998; 39: 1964-1971
        • Westphal S.
        • Orth M.
        • Ambrosch A.
        • Osmundsen K.
        • Luley C.
        Postprandial chylomicrons and VLDLs in severe hypertriacylglycerolemia are lowered more effectively than are chylomicron remnants after treatment with n-3 fatty acids.
        Am. J. Clin. Nutr. 2000; 71: 914-920
        • Boquist S.
        • Karpe F.
        • Danell-Toverud K.
        • Hamsten A.
        Effects of atorvastatin on postprandial plasma lipoproteins in postinfarction patients with combined hyperlipidaemia.
        Atherosclerosis. 2002; 162: 163-170
        • Brunzell J.D.
        • Hazzard W.R.
        • Porte Jr., D.
        • Bierman E.L.
        Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man.
        J. Clin. Invest. 1973; 52: 1578-1585
        • Keating G.M.
        • Ormrod D.
        Micronised fenofibrate: an updated review of its clinical efficacy in the management of dyslipidaemia.
        Drugs. 2002; 62: 1909-1944
        • Desager J.P.
        • Horsmans Y.
        • Vandenplas C.
        • Harvengt C.
        Pharmacodynamic activity of lipoprotein lipase and hepatic lipase, and pharmacokinetic parameters measured in normolipidaemic subjects receiving ciprofibrate (100 or 200 mg/day) or micronised fenofibrate (200 mg/day) therapy for 23 days.
        Atherosclerosis. 1996; 124: S65-S73
        • Hultin M.
        • Olivecrona T.
        Conversion of chylomicrons into remnants.
        Atherosclerosis. 1998; 141: S25-S29
        • Cianflone K.
        • Bilodeau M.
        • Davignon J.
        • Sniderman A.D.
        Modulation of chylomicron remnant metabolism by an hepatic hydroxymethylglutaryl coenzyme A reductase inhibitor.
        Metabolism. 1990; 39: 274-280
        • Battula S.B.
        • Fitzsimons O.
        • Moreno S.
        • Owens D.
        • Collins P.
        • Johnson A.
        • et al.
        Postprandial apolipoprotein B48-and B100-containing lipoproteins in type 2 diabetes: do statins have a specific effect on triglyceride metabolism?.
        Metabolism. 2000; 49: 1049-1054
        • Parhofer K.G.
        • Barrett P.H.
        • Schwandt P.
        Atorvastatin improves postprandial lipoprotein metabolism in normolipidemlic subjects.
        J. Clin. Endocrinol. Metab. 2000; 85: 4224-4230