Serum homocysteine concentrations, gemfibrozil treatment, and progression of coronary atherosclerosis


      The present study aimed to assess the effect of gemfibrozil on serum total homocysteine (tHcy) concentration and to evaluate the influence of tHcy on the angiographically determined progression of coronary atherosclerosis in a randomised, placebo-controlled trial of 395 post-coronary bypass men with low HDL cholesterol levels. The baseline levels of tHcy and those after 16 months of randomised therapy were measured by high-pressure liquid chromatography. Patients were genotyped for the thermolabile variant of N5,N10-methylenetetrahydrofolate reductase (MTHFR) (677C>T substitution). Gemfibrozil therapy was associated with a median 18% increase in tHcy levels (P<0.001). In the gemfibrozil group increases in tHcy and HDL cholesterol were related (r=0.217, P=0.004), but changes in tHcy and triglycerides were not. Levels of tHCy were not associated with baseline extent or progression of coronary-artery disease. Subjects homozygous for the rare MTHFR T allele had 34% higher median tHcy concentrations than CC homozygotes or CT heterozygotes, but responses to gemfibrozil did not differ significantly among genotypes. The MTHFR genotype was not associated with extent or progression of coronary atherosclerosis. We conclude that gemfibrozil causes a significant elevation in tHcy levels, but the clinical relevance of this is unknown at present.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Hankey G.J.
        • Eikelboom J.W.
        Homocysteine and vascular disease.
        Lancet. 1999; 354: 407-413
        • Welch G.N.
        • Loscalzo J.
        Homocysteine and atherothrombosis.
        New Engl. J. Med. 1998; 338: 1042-1050
        • Eikelboom J.W.
        • Lonn E.
        • Genest Jr., J.
        • Hankey G.
        • Yusuf S.
        Homocystein(e) and cardiovascular disease: a critical review of the epidemiologic evidence.
        Ann. Intern. Med. 1999; 131: 363-375
        • Mangoni A.A.
        • Jackson S.H.D.
        Homocysteine and cardiovascular disease: current evidence and future prospects.
        Am. J. Med. 2002; 112: 556-565
      1. The Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke. A meta-analysis. J Am Med Assoc 2002;288:2015–22.

        • De Lorgeril M.
        • Salen P.
        • Paillard F.
        • Lacan P.
        • Richard G.
        Lipid-lowering drugs and homocysteine.
        Lancet. 1999; 353: 209-210
        • Dierkes J.
        • Westphal S.
        • Luley C.
        Serum homocysteine increases after therapy with fenofibrate or bezafibrate.
        Lancet. 1999; 354: 219-220
        • Giral P.
        • Bruckert E.
        • Jacob N.
        • Chapman M.J.
        • Foglietti M.J.
        • Turpin G.
        Homocysteine and lipid lowering agents. A comparison between atorvastatin and fenofibrate in patients with mixed hyperlipidemia.
        Atherosclerosis. 2001; 154: 421-427
        • Ericsson C.-G.
        • Hamsten A.
        • Nilsson J.
        • Grip L.
        • Svane B.
        • de Faire U.
        Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients.
        Lancet. 1996; 347: 849-853
        • Frick M.H.
        • Syvänne M.
        • Nieminen M.S.
        • Kauma H.
        • Majahalme S.
        • Virtanen V.
        • et al.
        Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol.
        Circulation. 1997; 96: 2137-2143
      2. Diabetes Atherosclerosis Intervention Study Investigators. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 2001;375:905–10.

        • Frick M.H.
        • Elo O.
        • Haapa K.
        • Heinonen O.P.
        • Heinsalmi P.
        • Helo P.
        • et al.
        Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia: safety of treatment, changes in risk factors, and incidence of coronary heart disease.
        New Engl. J. Med. 1987; 317: 1237-1245
        • Bloodfield Rubins H.
        • Robins S.J.
        • Collins D.
        • Fye C.L.
        • Anderson J.W.
        • Elam M.B.
        • et al.
        Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol.
        New Engl. J. Med. 1999; 341: 410-418
        • Westphal S.
        • Dierkes J.
        • Luley C.
        Effects of fenofibrate and gemfibrozil on plasma homocysteine.
        Lancet. 2001; 358: 39-40
        • Kang S.S.
        • Zhou J.
        • Wong P.W.K.
        • Kowalisyn J.
        • Strokosch G.
        Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase.
        Am. J. Hum. Genet. 1988; 43: 414-421
        • Frosst P.
        • Blom H.J.
        • Milos R.
        • Goyette P.
        • Sheppard C.A.
        • Matthews R.G.
        • et al.
        A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase.
        Nat. Genet. 1995; 10: 111-113
        • Syvänne M.
        • Taskinen M.-R.
        • Nieminen M.S.
        • Manninen V.
        • Kesäniemi Y.A.
        • Pasternack A.
        • et al.
        A study to determine the response of coronary atherosclerosis to raising low HDL cholesterol with a fibric-acid derivative in men after coronary bypass surgery: the rationale, design, and baseline characteristics of the LOCAT study.
        Control Clin. Trials. 1997; 18: 93-119
        • Syvänne M.
        • Nieminen M.S.
        • Frick M.H.
        • Kauma H.
        • Majahalme S.
        • Virtanen V.
        • et al.
        Associations between lipoproteins and the progression of coronary and vein-graft atherosclerosis in a controlled trial with gemfibrozil in men with low baseline levels of HDL cholesterol.
        Circulation. 1998; 98: 1993-1999
        • Miller S.A.
        • Dykes D.D.
        • Polesky H.F.
        A simple salting out procedure for extracting DNA from human nucleated cells.
        Nucleic Acids Res. 1988; 16: 1215
        • Day I.N.
        • Humphries S.E.
        Electrophoresis for genotyping: microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose.
        Anal. Biochem. 1994; 222: 389-395
        • Dekou V.
        • Whincup P.
        • Papacosta O.
        • Ebrahim S.
        • Lennon L.
        • Ueland P.M.
        • et al.
        The effect of C677T and A1298C polymorphisms in the methylenetetrahydrofolate reductase gene on homocysteine levels in elderly men and women from the British regional heart study.
        Atherosclerosis. 2001; 154: 659-666
        • Syvänne M.
        • Nieminen M.S.
        • Frick M.H.
        Accuracy and precision of quantitative arteriography in the evaluation of coronary artery disease after coronary bypass surgery: a validation study.
        Int. J. Vasc. Imaging. 1994; 10: 243-252
        • Fruchart J.-C.
        • Brewer H.B.
        • Leitersdorf E.
        Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease.
        Am. J. Cardiol. 1998; 81: 912-917
        • Fruchart J.C.
        • Duriez P.
        • Staels B.
        Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis.
        Curr. Opin. Lipidol. 1999; 10: 245-257
        • Desouza C.
        • Keebler M.
        • McNamara D.
        • Fonseca V.
        Drugs affecting homocysteine metabolism: impact on cardiovascular risk.
        Drugs. 2002; 62: 605-616
        • Nygård O.
        • Nordrehaug J.E.
        • Refsum H.
        • Ueland P.M.
        • Farstad M.
        • Vollset S.E.
        Plasma homocysteine levels and mortality in patients with coronary artery disease.
        New Engl. J. Med. 1997; 337: 230-236
        • Gudnason V.
        • Stansbie D.
        • Scott J.
        • Bowron A.
        • Nicaud V.
        • Humphries S.E.
        • on behalf of the EARS Group
        C677T (thermolabile alanine/valine) polymorphism in methylenetetrahydrofolate reductase (MTHFR): its frequency and impact on plasma homocysteine concentration in different European populations.
        Atherosclerosis. 1998; 136: 347-354
        • Brattstrom L.
        • Wilcken D.E.L.
        • Ohrvik J.
        • Brudin L.
        Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease.
        Circulation. 1998; 98: 2520-2526
        • Dekou V.
        • Gudnason V.
        • Hawe E.
        • Miller G.J.
        • Stansbie D.
        • Humphries S.E.
        Gene–environment and gene–gene interaction in the determination of plasma homocysteine levels in healthy middle-aged men.
        Thromb. Haemost. 2001; 85: 67-74