Lipoprotein concentrations in newborns are associated with allelic variations in their mothers


      Background: Factors determining lipoprotein concentrations in the fetus are not yet fully understood. We postulated that an important factor is the genetic make-up of the mother. In the present study, we examined the associations between the cord blood concentrations of lipoproteins of 525 newborns and the polymorphisms present in their mothers on the genes of apolipoprotein E (APOEE2, E3, E4), apolipoprotein C-III (APOC3C3238G also called APOC3S2) and lipoprotein lipase (LPLS447X). Results: Newborns born of mothers with APOEE2 allele had significantly lower cord blood LDL-C (P<0.01) and apoB (P<0.001) and significantly higher cord blood HDL-C and apoA1 (all P-values < 0.03) compared to those born of mothers with APOEE3E3 genotype. These associations were independent of the presence of APOEE2 allele in the newborns. Similarly, APOC3S2 in mothers was associated with significantly lower (all P<0.001) cord blood LDL-C, apoB, HDL-C and apoA1. In contrast, LPLS447X in mothers lowered significantly cord blood LDL-C and apoB only when LPLS447X was present in newborns. Most of the effects of these maternal polymorphisms on the newborns were independent of the changes of maternal lipoproteins generated by these polymorphisms. Conclusions: This is the first evidence that maternal genetic variations influence fetal lipoprotein concentrations, independent of the genetic status of the fetus and of the variations of maternal lipoprotein concentrations generated by these genetic variants. It suggests that proteic components of maternal lipoproteins strongly control the metabolism of maternal lipoproteins carried out at the surface of the placenta to assure the cholesterol delivery to the fetus.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Barker DJP. Mothers, babies and disease in later life. 1st ed. London, UK: BMJ Publishing Group; 1994.

        • Napoli C.
        • Glass C.K.
        • Witztum J.L.
        • Deutsch R.
        • D’Armiento F.P.
        • Palinski W.
        Influence of maternal hypercholesterolemia during pregnancy on progression of early atherosclerotic lesions in childhood: fate of early lesions in children (FELIC) study.
        Lancet. 1999; 354: 1234-1240
        • Woolet L.A.
        The origins and roles of cholesterol and fatty acids in the fetus.
        Curr. Opin. Lipidol. 2000; 12: 305-312
        • Vobecky J.S.
        • Vobecky J.
        Biochemical indices of nutritional status in maternal.
        Am. J. Clin. Nutr. 1982; 36: 630-642
        • Taylor G.O.
        • Albers J.J.
        • Warnick G.R.
        • Adolphson J.L.
        • McFarlane H.
        • Sullivan D.R.
        • et al.
        Studies of lipoproteins and fatty acids in maternal and cord blood of two racial groups of Trinidad.
        Lipids. 1987; 22: 173-177
        • Ortega R.M.
        • Gaspar M.J.
        • Cantero M.
        Influence of maternal serum lipids and maternal diet during the third trimester of pregnancy on umbilical cord blood lipids in two populations of Spanish newborns.
        Int. J. Vit. Nutr. Res. 1995; 66: 250-257
        • Lane D.M.
        • Mc Conathy W.J.
        Factors affecting the lipid and lipoprotein levels in cord sera.
        Pediatr. Res. 1983; 17: 83-91
        • Diaz M.
        • Leal C.
        • Ramon y Cajal J.
        • Jimenez M.D.
        • Martinez H.
        • Pocovi M.
        • et al.
        Cord blood lipoprotein-cholesterol: relationship with birth weight and gestational age of newborns.
        Metabolism. 1989; 38: 435-438
        • Lehtimaki T.
        • Porkka K.
        • Viikari J.
        • Ehnholm C.
        • Akerblom H.K.
        • Nikkari T.
        Apolipoprotein E phenotypes and serum lipids in newborns and 3-year-old children; the Cardiovascular Risk in Young Finns Study.
        Pediatrics. 1994; 94: 489-493
        • Steinmetz A.
        • Thiemann E.
        • Czekelius P.
        • Kaffarnik H.
        Polymorphism of apolipoprotein E influences levels of serum apolipoprotein E and B in the human neonates.
        Eur. J. Clin. Invest. 1989; 19: 390-394
        • Nagashka H.
        • Chiba H.
        • Hikuta H.
        • Akita H.
        • Takahashi Y.
        • Yanai H.
        • et al.
        Unique character and metabolism of high density lipoprotein (HDL) in fetus.
        Atherosclerosis. 2002; 161: 215-223
        • Low P.S.
        • Saha N.
        • Tay J.S.
        • Arulkumaran S.
        Influence of PvuII (intron 6) polymorphism of the lipoprotein lipase gene on cord plasma lipid and apolipoprotein levels in Indian and Chinese newborns of Singapore.
        Pediatr. Res. 1998; 43: 240-244
        • Winkler K.
        • Wetzka B.
        • Hoffman M.M.
        • Friedrich I.
        • Kinner M.
        • Baumstark W.
        • et al.
        Low density lipoprotein subfractions during pregnancy: accumulation of boyant LDL with advancing gestation.
        J. Clin. Endocrinol. Metab. 2000; 85: 4543-4550
        • Mahley R.W.
        • Huang Y.
        Apolipoprotein E: from atherosclerosis to Alzheimer’s disease and beyond.
        Curr. Opin. Lipidol. 1999; 10: 207-217
        • Shachter N.S.
        Apolipoprotein C-I and C-III as important modulators of lipoprotein metabolism.
        Curr. Opin. Lipidol. 2001; 12: 297-304
        • Hokanson J.E.
        Functional variants in the lipoprotein lipase gene and risk of cardiovascular disease.
        Curr. Opin. Lipidol. 1999; 10: 393-399
      2. Waterworth DM, Ribalta J, Nicaud V, Dallongeville J, Humphries SE, Talmud, on behalf of the EARS Group. ApoC-III gene variants modulate postprandial response to both glucose and fat tolerance tests. Circulation 1999;99:1872–7.

        • Bolla M.K.
        • Haddad L.
        • Humphries S.E.
        • Winder A.F.
        • Day I.N.M.
        High-throughput method for determination of apolipoprotein E genotypes with use of restriction digestion analysis by microplate array diagonal gel electrophoresis.
        Clin. Chem. 1995; 41: 1599-1604
        • Mattu R.K.
        • Needham E.W.A.
        • Morgan R.
        • Rees A.
        • Hackshaw A.K.
        • Stocks J.
        • et al.
        DNA variants at the LPL gene locus associate with angiographically defined severity of atherosclerosis and serum lipoprotein levels in a Welsh population.
        Arterioscler. Thromb. 1994; 14: 1090-1097
        • Briz M.
        • Regidor C.
        • Monteagudo D.
        • Somolinos N.
        • Garaulet C.
        • Fores R.
        • et al.
        Detection of maternal DNA in umbilical cord blood by polymerase chain reaction amplification of minisatellite sequence.
        Bone Marrow Transplant. 1998; 21: 1097-1099
        • Bianchi D.W.
        • Williams J.M.
        • Sullivan L.M.
        • Hanson F.W.
        • Klinger K.W.
        • Shuber A.P.
        PCR quantification of fetal cells in maternal blood in normal and aneuploid pregnancies.
        Am. J. Hum. Genet. 1997; 61: 822-829
        • Loughrey C.M.
        • Pimm E.
        • Heiss G.
        • Rifai N.
        Race and gender difference in cord blood lipoproteins.
        Atherosclerosis. 2000; 148: 57-65
      3. Armitage P, Berry G. Statistical methods in medical research. 2nd ed. London, UK: Blackwell Scientific Publications; 1987.

      4. Hardl DL, Clark AG. Principles of population genetics. 3rd ed. Sunderland, MA, USA: Sinauer Associates Inc.; 1997.

        • Russo G.T.
        • Meigs J.B.
        • Cupples L.A.
        • Demissie S.
        • Otvos J.D.
        • Wilson P.W.F.
        • et al.
        Association of the Sst-I polymorphism at the APOC3 gene locus with variations in lipid levels.
        Atherosclerosis. 2001; 158: 173-181
        • Esterbauer H.
        • Hell E.
        • Krempler F.
        • Patsch W.
        Allele specific differences in apolipoprotein C-III mRNA expression in human liver.
        Clin. Chem. 1999; 45: 331-339
        • Shoulders C.C.
        • Harry P.J.
        • Lagrost L.
        • White S.E.
        • Shah N.F.
        • North J.D.
        • et al.
        Variation of the apoAI/CIII/AIV gene complex is associated with elevated plasma levels of apoCIII.
        Atherosclerosis. 1991; 87: 239-247
        • Overbergh L.
        • Lorent K.
        • Tortrenkens S.
        • Van Leuven F.
        • Van den Berghe H.
        Expression of mouse alpha-macroglobulins, lipoprotein receptor related protein, LDL receptor, apolipoprotein E, and lipoprotein lipase in pregnancy.
        J. Lipid Res. 1995; 36: 1774-1786
        • Huter O.
        • Wolf H.J.
        • Schnetzer A.
        • Pfaller K.
        Lipoprotein lipase.
        Placenta. 1997; 18: 707-715
        • Mc Gladdery S.H.
        • Frohlich J.J.
        Lipoprotein lipase and apoE polymorphisms: relationship to hypertriglyceridemia during pregnancy.
        J. Lipid Res. 2001; 42: 1905-1912
        • Van Biervliet J.P.
        • Rosseneu M.
        • Bury J.
        • Caster H.
        • Stul M.S.
        • Lamote R.
        Apolipoprotein and lipid composition of plasma lipoproteins in newborns during the first month of life.
        Pediatr. Res. 1986; 20: 324-328
      5. Tint GS, Irons M, Elias ER. Defective cholesterol biosynthesis associated with the Smith–Lemli–Opitz syndrome. N. Eng. J. Med. 1994;330:107–13.

        • Mc Conihay J.A.
        • Honkomp A.M.
        • Granholm N.A.
        • Woollett L.A.
        Maternal high density lipoproteins affect fetal mass and extra-embryonic fetal tissue sterol metabolism in the mouse.
        J. Lipid. Res. 2000; 41: 424-432
        • Pepe G.J.
        • Albrecht E.
        Actions of placental and fetal adrenal steroid hormones in primate pregnancy.
        Endocr. Rev. 1995; 16: 608-649
        • Desoye G.
        • Schwenditisch M.O.
        • Pfeiffer K.P.
        • Zechner R.
        • Kostner G.M.
        Correlation of hormones with lipid and lipoprotein levels during normal pregnancy and postpartum.
        J. Clin. Endocrinol. Metab. 1987; 64: 704-712
        • Henson M.C.
        • Greene S.J.
        • Reggio B.C.
        • Shi W.
        • Swan K.F.
        Effects of reduced maternal lipoprotein cholesterol availability on placental progesterone biosynthesis in the Baboon.
        Endocrinology. 1997; 138: 1385-1391
        • Nayar S.
        • Reggio B.C.
        • Henson M.C.
        Association of endogenous steroid levels with high and low density lipoprotein concentrations in the human maternal-fetoplacental unit at term.
        J. Reprod. Med. 1996; 41: 91-99
        • Parker C.R.
        • Simpson E.R.
        • Bilheimer D.W.
        • Leveno K.
        • Carr B.R.
        • Mac donald P.C.
        Inverse relation between low density lipoprotein cholesterol and dehydroepiandrosterone sulfate in human fetal plasma.
        Science. 1980; 208: 513-514
        • Elphick M.C.
        • Harrisson A.T.
        • Lawlor J.P.
        • Hull D.
        Cord blood hypertriglyceridemia as an index of fetal stress: use of a simple screening test and results of further biochemical analysis.
        Br. J. Obstet. Gynecol. 1978; 85: 303-310
        • Napoli C.
        • D’Armiento F.P.
        • Mancini F.P.
        • Witztum J.L.
        • Palumbo G.
        • Palinski W.
        Fatty streak formation occurs in fetal aortas and its greatly enhanced by maternal hypercholesterolemia: intimal accumulations of LDL and its oxydation precede monocyte recruitment into early atherosclerosis lesions.
        J. Clin. Invest. 1997; 100: 2680-2690
        • Napoli C.
        • Witztum J.L.
        • de Nigris F.
        • Palumbo G.
        • D’Armiento F.P.
        • Palinski W.
        Intracranial arteries of human fetuses are more resistant to hypercholesterolemia-induced fatty streak formation than extracranial arteries.
        Circulation. 1999; 99: 2003-2010
        • Kallio M.J.T.
        • Salmenperä L.
        • Siimes M.A.
        • Perheentupa J.
        • Miettinen T.A.
        Tracking serum cholesterol and lipoprotein levels from the first year.
        Pediatrics. 1993; 91: 949-954
        • Freedman D.S.
        • Srinivasan S.R.
        • Cresanta J.L.
        • Webber L.S.
        • Berenson G.S.
        The Bogalusa Study. Serum lipids and lipoproteins.
        Pediatrics. 1987; 80: 789-796