Research Article| Volume 172, ISSUE 2, P229-238, February 2004

Download started.


Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration


      Hyperhomocysteinaemia has recently been recognized as a risk factor of cardiovascular disease. However, the action mechanisms of homocysteine (Hcy) are not well understood. Given that Hcy may be involved in the recruitment of monocytes and neutrophils to the vascular wall, we have investigated the role of Hcy in essential functions of human neutrophils. We show that Hcy increased superoxide anion (O2) release by neutrophils to the extracellular medium, and that this effect was inhibited by superoxide dismutase and diphenyleneiodonium (DPI), an inhibitor of NADPH oxidase activity. The enzyme from rat peritoneal macrophages displayed a similar response. These effects were accompanied by a time-dependent increased translocation of p47phox and p67phox subunits of NADPH oxidase to the plasma membrane. We also show that Hcy increased intracellular H2O2 production by neutrophils, that Hcy enhanced the activation and phosphorylation of mitogen-activated protein kinases (MAPKs), specifically p38-MAPK and ERK1/2, and that the migration of neutrophils was increased by Hcy. Present results are the first evidence that Hcy enhances the oxidative stress of neutrophils, and underscore the potential role of phagocytic cells in vascular wall injury through O2 release in hyperhomocysteinaemia conditions.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Berliner S.
        • Rogowski O.
        • Rotstein R.
        • Fusman R.
        • Shapira I.
        • Bornstein N.M.
        Activated polymorphonuclear leukocytes and monocytes in the peripheral blood of patients with ischemic heart and brain conditions correspond to the presence of multiple risk factors for atherothrombosis.
        Cardiology. 2000; 94: 19-25
        • Takahashi T.
        • Hato F.
        • Yamane T.
        • Fukumasu H.
        • Suzuki K.
        • Ogita S.
        Activation of human neutrophil by cytokine-activated endothelial cells.
        Circ. Res. 2001; 88: 422-429
        • Huang Z.S.
        • Jeng J.S.
        • Wang C.H.
        • Yip P.K.
        • Wu T.H.
        • Lee T.K.
        Correlations between peripheral differential leukocyte counts and carotid atherosclerosis in nonsmokers.
        Atherosclerosis. 2001; 158: 431-436
        • Welch G.N.
        • Loscalzo J.
        Homocysteine and atherothrombosis.
        N. Engl. J. Med. 1998; 338: 1042-1050
        • Ueland P.M.
        • Refsum H.
        • Beresford S.A.
        • Vollset S.E.
        The controversy over homocysteine and cardiovascular risk.
        Am. J. Clin. Nutr. 2000; 72: 324-332
        • Brattstrom L.
        • Wilcken D.E.
        Homocysteine and cardiovascular disease: cause or effect?.
        Am. J. Clin. Nutr. 2000; 72: 315-323
        • Medina M.
        • Urdiales J.L.
        • Amores-Sanchez M.I.
        Roles of homocysteine in cell metabolism: old and new functions.
        Eur. J. Biochem. 2001; 268: 3871-3882
      1. Cleophas TJ, Hornstra N, van Hoogstraten B, van der MJ, Homocysteine, a risk factor for coronary artery disease or not? A meta-analysis, Am J Cardiol 86 (2000) 1005–9, A8.

        • Wall R.T.
        • Harlan J.M.
        • Harker L.A.
        • Striker G.E.
        Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury.
        Thromb. Res. 1980; 18: 113-121
        • Hajjar K.A.
        Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor.
        J. Clin. Invest. 1993; 91: 2873-2879
        • Dudman N.P.
        • Temple S.E.
        • Guo X.W.
        • Fu W.
        • Perry M.A.
        Homocysteine enhances neutrophil–endothelial interactions in both cultured human cells and rats In vivo.
        Circ. Res. 1999; 84: 409-416
        • Koga T.
        • Claycombe K.
        • Meydani M.
        Homocysteine increases monocyte and T-cell adhesion to human aortic endothelial cells.
        Atherosclerosis. 2002; 161: 365-374
        • Khajuria A.
        • Houston D.S.
        Induction of monocyte tissue factor expression by homocysteine: a possible mechanism for thrombosis.
        Blood. 2000; 96: 966-972
        • Schratzberger P.
        • Dunzendorfer S.
        • Reinisch N.
        • Kahler C.M.
        • Herold M.
        • Wiedermann C.J.
        Release of chemoattractants for human monocytes from endothelial cells by interaction with neutrophils.
        Cardiovasc. Res. 1998; 38: 516-521
        • Dunzendorfer S.
        • Rothbucher D.
        • Schratzberger P.
        • Reinisch N.
        • Kahler C.M.
        • Wiedermann C.J.
        Mevalonate-dependent inhibition of transendothelial migration and chemotaxis of human peripheral blood neutrophils by pravastatin.
        Circ. Res. 1997; 81: 963-969
        • Jacobsen D.W.
        Homocysteine and vitamins in cardiovascular disease.
        Clin. Chem. 1998; 44: 1833-1843
        • Segal A.W.
        • Abo A.
        The biochemical basis of the NADPH oxidase of phagocytes.
        Trends Biochem. Sci. 1993; 18: 43-47
        • McLeish K.R.
        • Klein J.B.
        • Coxon P.Y.
        • Head K.Z.
        • Ward R.A.
        Bacterial phagocytosis activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades in human neutrophils.
        J. Leukoc. Biol. 1998; 64: 835-844
        • Fialkow L.
        • Chan C.K.
        • Rotin D.
        • Grinstein S.
        • Downey G.P.
        Activation of the mitogen-activated protein kinase signaling pathway in neutrophils. Role of oxidants.
        J. Biol. Chem. 1994; 269: 31234-31242
        • Worthen G.S.
        • Avdi N.
        • Buhl A.M.
        • Suzuki N.
        • Johnson G.L.
        FMLP activates Ras and Raf in human neutrophils potential role in activation of MAP kinase.
        J. Clin. Invest. 1994; 94: 815-823
        • Chu Y.
        • Solski P.A.
        • Khosravi-Far R.
        • Der C.J.
        • Kelly K.
        The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation.
        J. Biol. Chem. 1996; 271: 6497-6501
        • Boyum A.
        Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g.
        Scand J Clin Lab Invest Suppl. 1968; 97: 77-89
        • Chiara M.D.
        • Bedoya F.
        • Sobrino F.
        Cyclosporin A inhibits phorbol ester-induced activation of superoxide production in resident mouse peritoneal macrophages.
        Biochem. J. 1989; 264: 21-26
        • El Bekay R.
        • Alvarez M.
        • Carballo M.
        • Martin-Nieto J.
        • Monteseirin J.
        • Pintado E.
        Activation of phagocytic cell NADPH oxidase by norfloxacin: a potential mechanism to explain its bactericidal action.
        J. Leukoc. Biol. 2002; 71: 255-261
        • Mankelow T.J.
        • Henderson L.M.
        Inhibition of the neutrophil NADPH oxidase and associated H+ channel by diethyl pyrocarbonate (DEPC), a histidine-modifying agent: evidence for at least two target sites.
        Biochem. J. 2001; 358: 315-324
        • El Bekay R.
        • Alvarez M.
        • Monteseirin J.
        • Alba G.
        • Chacon P.
        • Vega A.
        Oxidative stress is a critical mediator of the angiotensin II signal in human neutrophils: involvement of mitogen-activated protein kinase, calcineurin, and the transcription factor NF-κB.
        Blood. 2003; 102: 662-671
        • Cathcart R.
        • Schwiers E.
        • Ames B.N.
        Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay.
        Anal Biochem. 1983; 134: 111-116
        • Hissin P.J.
        • Hilf R.
        A fluorometric method for determination of oxidized and reduced glutathione in tissues.
        Anal. Biochem. 1976; 74: 214-226
        • Gallin J.I.
        • Fletcher M.P.
        • Seligmann B.E.
        • Hoffstein S.
        • Cehrs K.
        • Mounessa N.
        Human neutrophil-specific granule deficiency: a model to assess the role of neutrophilspecific granules in the evolution of the inflammatory response.
        Blood. 1982; 59: 1317-1329
        • Harrison D.G.
        Cellular and molecular mechanisms of endothelial cell dysfunction.
        J. Clin. Invest. 1997; 100: 2153-2157
        • Hancock J.T.
        • Jones O.T.
        The inhibition by diphenyleneiodonium and its analogues of superoxide generation by macrophages.
        Biochem. J. 1987; 242: 103-107
        • Heyworth P.G.
        • Curnutte J.T.
        • Nauseef W.M.
        • Volpp B.D.
        • Pearson D.W.
        • Rosen H.
        • et al.
        Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558.
        J. Clin. Invest. 1991; 87: 352-356
        • Suchard S.J.
        • Boxer L.A.
        Exocytosis of a subpopulation of specific granules coincides with H2O2 production in adherent human neutrophils.
        J. Immunol. 1994; 152: 290-300
        • Upchurch Jr., G.R.
        • Welch G.N.
        • Fabian A.J.
        • Freedman J.E.
        • Johnson J.L.
        • Keaney Jr., J.F.
        • et al.
        Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase.
        J. Biol. Chem. 1997; 272: 17012-17017
        • Cramer E.M.
        • Breton-Gorius J.
        Ultrastructural localization of lysozyme in human neutrophils by immunogold.
        J. Leukoc. Biol. 1987; 41: 242-247
        • Alessi D.R.
        • Cuenda A.
        • Cohen P.
        • Dudley D.T.
        • Saltiel A.R.
        PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo.
        J. Biol. Chem. 1995; 270: 27489-27494
        • Cuenda A.
        • Rouse J.
        • Doza Y.N.
        • et al.
        SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1.
        FEBS Lett. 1995; 364: 229-233
        • Witko-Sarsat V.
        • Rieu P.
        • Descamps-Latscha B.
        • Lesavre P.
        • Halbwachs-Mecarelli L.
        Neutrophils: molecules.
        Lab. Invest. 2000; 80: 617-653
        • Mangoni A.A.
        • Jackson S.H.
        Homocysteine and cardiovascular disease: current evidence and future prospects.
        Am. J. Med. 2002; 112: 556-565
        • Boushey C.J.
        • Beresford S.A.
        • Omenn G.S.
        • Motulsky A.G.
        A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes.
        J Am Med Assoc. 1995; 274: 1049-1057
        • Harker L.A.
        • Ross R.
        • Slichter S.J.
        • Scott C.R.
        Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis.
        J. Clin. Invest. 1976; 58: 731-741
        • Graham I.M.
        • Daly L.E.
        • Refsum H.M.
        • et al.
        Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project.
        J Am Med Assoc. 1997; 277: 1775-1781
        • Sutton-Tyrrell K.
        • Bostom A.
        • Selhub J.
        • Zeigler-Johnson C.
        High homocysteine levels are independently related to isolated systolic hypertension in older adults.
        Circulation. 1997; 96: 1745-1749
        • Heinecke J.W.
        • Kawamura M.
        • Suzuki L.
        • Chait A.
        Oxidation of low density lipoprotein by thiols: superoxide-dependent and -independent mechanisms.
        J. Lipid Res. 1993; 34: 2051-2061
        • Loscalzo J.
        The oxidant stress of hyperhomocyst(e)inemia.
        J. Clin. Invest. 1996; 98: 5-7
        • Olinescu R.
        • Kummerow F.A.
        • Handler B.
        • Fleischer L.
        The hemolytic activity of homocysteine is increased by the activated polymorphonuclear leukocytes.
        Biochem. Biophys. Res. Commun. 1996; 226: 912-916
        • Halliwell B.
        • Gutteridge J.M.
        The importance of free radicals and catalytic metal ions in human diseases.
        Mol. Aspects Med. 1985; 8: 89-193
        • Woo D.K.
        • Dudrick S.J.
        • Sumpio B.E.
        Homocysteine stimulates MAP kinase in bovine aortic smooth muscle cells.
        Surgery. 2000; 128: 59-66
        • Cai Y.
        • Zhang C.
        • Nawa T.
        • Aso T.
        • Tanaka M.
        • Oshiro S.
        Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH2-terminal kinase and promoter response element.
        Blood. 2000; 96: 2140-2148
        • Cadroy Y.
        • Dupouy D.
        • Boneu B.
        • Plaisancie H.
        Polymorphonuclear leukocytes modulate tissue factor production by mononuclear cells: role of reactive oxygen species.
        J. Immunol. 2000; 164: 3822-3828
        • Savage C.O.
        The evolving pathogenesis of systemic vasculitis.
        Clin. Med. 2002; 2: 458-464
        • Clarke R.
        • Collins R.
        Can dietary supplements with folic acid or vitamin B6 reduce cardiovascular risk? Design of clinical trials to test the homocysteine hypothesis of vascular disease.
        J. Cardiovasc. Risk. 1998; 5: 249-255