Advertisement

Aortic glutathione metabolic status: time-dependent alterations in fat-fed rabbits

  • Domenico Lapenna
    Correspondence
    Corresponding author. Tel.: +39-0871-358098; fax: +39-0871-551615.
    Affiliations
    Dipartimento di Medicina e Scienze dell’Invecchiamento, Facolta’ di Medicina e Chirurgia, Centro di Scienze dell’Invecchiamento-Fondazione Universita’ G. d’Annunzio, Patologia Medica, c/o Policlinico di Colle dell’Ara, Via dei Vestini, Chieti Scalo 66013, Italy
    Search for articles by this author
  • Sante D. Pierdomenico
    Affiliations
    Dipartimento di Medicina e Scienze dell’Invecchiamento, Facolta’ di Medicina e Chirurgia, Centro di Scienze dell’Invecchiamento-Fondazione Universita’ G. d’Annunzio, Patologia Medica, c/o Policlinico di Colle dell’Ara, Via dei Vestini, Chieti Scalo 66013, Italy
    Search for articles by this author
  • Giuliano Ciofani
    Affiliations
    Dipartimento di Medicina e Scienze dell’Invecchiamento, Facolta’ di Medicina e Chirurgia, Centro di Scienze dell’Invecchiamento-Fondazione Universita’ G. d’Annunzio, Patologia Medica, c/o Policlinico di Colle dell’Ara, Via dei Vestini, Chieti Scalo 66013, Italy
    Search for articles by this author
  • Maria Adele Giamberardino
    Affiliations
    Dipartimento di Medicina e Scienze dell’Invecchiamento, Facolta’ di Medicina e Chirurgia, Centro di Scienze dell’Invecchiamento-Fondazione Universita’ G. d’Annunzio, Patologia Medica, c/o Policlinico di Colle dell’Ara, Via dei Vestini, Chieti Scalo 66013, Italy
    Search for articles by this author
  • Franco Cuccurullo
    Affiliations
    Dipartimento di Medicina e Scienze dell’Invecchiamento, Facolta’ di Medicina e Chirurgia, Centro di Scienze dell’Invecchiamento-Fondazione Universita’ G. d’Annunzio, Patologia Medica, c/o Policlinico di Colle dell’Ara, Via dei Vestini, Chieti Scalo 66013, Italy
    Search for articles by this author

      Abstract

      Little is known about the vascular metabolic status of glutathione (GSH), which is crucial in cell antioxidant protection, in experimental conditions like high-fat diet-induced atherosclerosis. This issue was, therefore, investigated in two groups of seven rabbits fed a 0.5% cholesterol-, 5% lard- and 5% peanut oil-enriched diet for 18 and 80 days, which, respectively, raised the plasma values of total cholesterol by factors of about 12 and 37, and those of triglycerides by factors of 3 and 13; rabbits fed a standard diet for the same periods served as controls. Total GSH and the activities of the GSH level-maintaining enzymes glutathione reductase (GSSG-Red), γ-glutamylcysteine synthetase (γ-GCS) and γ-glutamyl transpeptidase (γ-GT) were specifically assessed in the aortic tissue, which was also assayed for fluorescent damage products of lipid peroxidation (FDPL). Sudan red staining of the aortic intima surface was also performed in two other groups of six controls and six fat-fed rabbits. After 18 days of fat feeding, a significant decrement of aortic GSSG-Red activity, associated with γ-GCS activation, increased GSH levels and normal γ-GT activity, was observed; FDPL were only moderately enhanced, and atherosclerotic lesions did not occur. After 80 days of atherogenic diet, aortic GSH content was significantly decreased in concomitance with a marked depression of γ-GT activity, while GSSG-Red and γ-GCS activities were not significantly changed with respect to 18 days of fat feeding; FDPL underwent further considerable augmentation, and extensive Sudan red-stained atherosclerotic lesions were evident. Thus, short-term fat feeding induces γ-GCS-dependent GSH biosynthesis of the rabbit aorta; prolonged high-fat intake and hyperlipidemic burden result instead in vascular γ-GT dysfunction with GSH depletion, eventually favoring oxidative atherogenic effects.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chisolm G.M.
        • Steinberg D.
        The oxidative modification hypothesis of atherogenesis: an overview.
        Free Radic. Biol. Med. 2000; 28: 1815-1826
        • Young I.S.
        • McEneny J.
        Lipoprotein oxidation and atherosclerosis.
        Biochem. Soc. Trans. 2001; 29: 358-362
        • Harlan J.M.
        • Levine J.D.
        • Callahan K.S.
        • Schwartz B.
        • Harker L.A.
        Glutathione redox cycle protects cultured endothelial cells against lysis by extracellularly generated hydrogen peroxide.
        J. Clin. Invest. 1984; 73: 706-713
        • Tsan M.-F.
        • Danis E.H.
        • Del Vecchio P.J.
        • Rosano C.L.
        Enhancement of intracellular glutathione protects endothelial cells against oxidant damage.
        Biochem. Biophys. Res. Commun. 1985; 127: 270-276
        • Kuzuya M.
        • Naito M.
        • Funaki C.
        • Hayashi T.
        • Asai K.
        • Kusuya F.
        Protective role of intracellular glutathione against oxidized low density lipoprotein in cultured endothelial cells.
        Biochem. Biophys. Res. Commun. 1989; 163: 1466-1472
        • Tsan M.-F.
        • White J.E.
        • Rosano C.L.
        Modulation of endothelial GSH concentrations: effect of exogenous GSH and GSH monoethyl ester.
        J. Appl. Physiol. 1989; 66: 1029-1034
        • Meister A.
        • Anderson M.E.
        Glutathione.
        Annu. Rev. Biochem. 1983; 52: 711-760
        • Griffith O.W.
        Biological and pharmacological regulation of mammalian glutathione synthesis.
        Free. Radic. Biol. Med. 1999; 27: 922-935
        • Rosenblat M.
        • Coleman R.
        • Aviram M.
        Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E-deficient mice.
        Atherosclerosis. 2002; 163: 17-28
        • Del Boccio G.
        • Lapenna D.
        • Porreca E.
        • et al.
        Aortic antioxidant defence mechanisms: time-related changes in cholesterol-fed rabbits.
        Atherosclerosis. 1990; 81: 127-135
        • Henry P.D.
        • Bentley K.I.
        Suppression of atherogenesis in cholesterol-fed rabbits treated with nifedipine.
        J. Clin. Invest. 1981; 68: 1366-1369
        • Tietze F.
        Enzymic method for quantitative determination of nanogram amount of total and oxidized glutathione: application to mammalian blood and other tissues.
        Anal. Biochem. 1969; 27: 502-522
        • Sekura R.
        • Meister A.
        γ-Glutamylcysteine synthetase.
        J. Biol. Chem. 1977; 252: 2599-2605
        • Tate S.S.
        • Meister A.
        Interaction of γ-glutamyl transpeptidase with amino acids, dipeptides, and derivates and analogs of glutathione.
        J. Biol. Chem. 1974; 249: 7593-7602
        • Dillard C.J.
        • Tappel A.L.
        Fluorescent damage products of lipid peroxidation.
        Methods Enzymol. 1984; 105: 337-348
        • Bradford M.M.
        A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein–dye binding.
        Anal. Biochem. 1976; 72: 248-254
      1. Glantz SA. Primer of biostatistics. New York: McGraw-Hill; 1987.

        • Tabatabaie T.
        • Floyd R.A.
        Susceptibility of glutathione peroxidase and glutathione reductase to oxidative damage and the protective effect of spin trapping agents.
        Arch. Biochem. Biophys. 1994; 314: 112-119
        • Tomlinson J.E.
        • Nakayama R.
        • Holten D.
        Repression of pentose phosphate pathway dehydrogenase synthesis and mRNA by dietary fat in rats.
        J. Nutr. 1988; 118: 408-415
        • Kawaguchi A.
        • Block K.
        Inhibition of glucose-6-phosphate dehydrogenase by palmitoyl coenzyme A.
        J. Biol. Chem. 1974; 249: 5793-5800
        • Kanazawa K.
        • Ashida H.
        Target enzymes on hepatic dysfunction caused by dietary products of lipid peroxidation.
        Arch. Biochem. Biophys. 1991; 288: 71-78
        • Cheng K.M.
        • Aggrey S.E.
        • Nichols C.R.
        • Garnett M.E.
        • Godin D.V.
        Antioxidant enzymes and atherosclerosis in Japanese quail: heritability and genetic correlation estimates.
        Can. J. Cardiol. 1997; 13: 669-676
        • Smith A.C.
        • Boyd M.R.
        Preferential effects of 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) on pulmonary glutathione reductase and glutathione/glutathione disulfide ratios: possible implications for lung toxicity.
        J. Pharmacol. Exp. Ther. 1984; 229: 658-663
        • Jenkinson S.G.
        • Jordan J.M.
        • Lawrence R.A.
        BCNU-induced protection from hyperbaric hyperoxia: role of glutathione metabolism.
        J. Appl. Physiol. 1988; 65: 2531-2536
        • Moellering D.
        • Mc Andrew J.
        • Patel R.P.
        • Forman H.J.
        • Mulcahy T.
        • Jo H.
        • et al.
        The induction of GSH synthesis by nanomolar concentrations of NO in endothelial cells: a role for γ-glutamylcysteine synthetase and γ-glutamyl transpeptidase.
        FEBS Lett. 1999; 448: 292-296
        • Ochi T.
        Hydrogen peroxide increases γ-glutamylcysteine synthetase in cultured Chinese hamster V79 cells.
        Arch. Toxicol. 1995; 70: 96-103
        • Darley-Usmar V.M.
        • Severn A.
        • O’Leary V.J.
        • Rogers M.
        Treatment of macrophages with oxidized low-density lipoprotein increases their intracellular glutathione content.
        Biochem. J. 1991; 278: 429-434
        • Liu R.M.
        • Borok Z.
        • Forman H.J.
        4-Hydroxy-2-nonenal increases γ-glutamylcysteine synthetase gene expression in alveolar epithelial cells.
        Am. J. Respir. Cell Mol. Biol. 2001; 24: 499-505
        • Rahman I.
        Regulation of nuclear factor-k-B, activator protein-1, and glutathione levels by tumor necrosis factor-α and dexamethasone in alveolar epithelial cells.
        Biochem. Pharmacol. 2000; 60: 1041-1049
        • Cotgreave I.A.
        • Schuppe-Koistinen I.S.
        A role for γ-glutamyl transpeptidase in the transport of cystine into human endothelial cells: relationship to intracellular glutathione.
        Biochim. Biophys. Acta. 1994; 1222: 375-382
        • Miura K.
        • Ishii T.
        • Sugita Y.
        • Bannai S.
        Cystine uptake and glutathione levels in endothelial cells exposed to oxidative stress.
        Am. J. Physiol. 1992; 262: C50-C58
        • Mugge A.
        • Brandes R.P.
        • Boger R.H.
        • et al.
        Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits.
        J. Cardiovasc. Pharmacol. 1994; 24: 994-998
        • Napoli C.
        • Lerman L.O.
        Involvement of oxidation-sensitive mechanisms in the cardiovascular effects of hypercholesterolemia.
        Mayo Clin. Proc. 2001; 76: 619-631
        • Wolin M.S.
        Interactions of oxidants with vascular signaling systems.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1430-1442
        • Rajpert-De Meyts E.
        • Shi M.
        • Chang M.
        • Robison T.W.
        • Groffen J.
        • Heisterkamp N.
        • et al.
        Transfection with γ-glutamyl transpeptidase enhances recovery from glutathione depletion using extracellular glutathione.
        Toxicol. Appl. Pharmacol. 1992; 114: 56-62
        • Shi M.
        • Gozal E.
        • Choy H.A.
        • Forman H.J.
        Extracellular glutathione γ-glutamyl-transpeptidase prevent H2O2-induced injury by 2,3-dimethoxyl-1,4-naphtoquinone.
        Free Radic. Biol. Med. 1993; 15: 57-67
        • Forman H.J.
        • Skelton D.C.
        Protection of alveolar macrophages from hyperoxia by γ-glutamyl transpeptidase.
        Am. J. Physiol. 1990; 259: L102-L107
        • Jeang J.C.
        • Liu Y.
        • Brown L.A.
        • Marc R.E.
        • Klings E.
        • Brady-Joyce M.
        γ-Glutamyl transferase deficiency results in lung oxidant stress in normoxia.
        Am. J. Physiol. Lung Cell Mol. Physiol. 2002; 283: L766-L776
        • Allen R.G.
        • Venkatraj V.S.
        Oxidants and antioxidants in development and differentiation.
        J. Nutr. 1992; 122: 631-635
        • Schafer F.Q.
        • Buettner G.R.
        Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple.
        Free Radic. Biol. Med. 2001; 30: 1191-1212
        • Hansen J.M.
        • Choe H.-S.
        • Carney E.W.
        • Harris C.
        Differential antioxidant enzyme activities and glutathione content between rat and rabbit conceptuses.
        Free Radic. Biol. Med. 2001; 30: 1078-1088
        • Ortega A.
        • Mas-Oliva J.
        Cholesterol effect on enzyme activity of the sarcolemmal (Ca2+ + Mg2+)-ATPase from cardiac muscle.
        Biochim. Biophys. Acta. 1984; 773: 231-236
        • Papahadjopoulos D.
        • Lawden M.
        • Kimelberg H.
        Role of cholesterol in membranes: effects on phospholipid–protein interactions.
        Biochim. Biophys. Acta. 1973; 330: 8-26
        • Kimelberg H.
        • Papahadjopoulos D.
        Effects of phospholipid acyl chain fluidity, phase transitions, and cholesterol on (Na+ + K+)-stimulated adenosine triphosphatase.
        J. Biol. Chem. 1974; 249: 1071-1080
        • Itoh K.
        • Inoue M.
        • Morino Y.
        Rose bengal-sensitized photooxidation of rat kidney γ-glutamyl transferase.
        Enzyme. 1984; 31: 143-153
        • van Klaveren R.J.
        • Hoet P.H.M.
        • Pype J.L.
        • Demedts M.
        • Nemery B.
        Increase in γ-glutamyltransferase by glutathione depletion in rat type II pneumocytes.
        Free Radic. Biol. Med. 1996; 22: 525-534
        • van Klaveren R.J.
        • Pype J.L.
        • Demedts M.
        • Nemery B.
        Decrease in γ-glutamyltransferase activity in rat type II cells exposed in vitro to hyperoxia: effects of the 21-aminosteroid U-74389G.
        Exp. Lung Res. 1997; 23: 347-359
        • Lorenc-Koci E.
        • Sokolowska M.
        • Wlodek L.
        Effect of acute administration of 1,2,3,4-tetrahydroisoquinoline on the levels of glutathione and reactive oxygen species, and on the enzymatic activity of γ-glutamyl transpeptidase in dopaminergic structures of rat brain.
        Neuroscience. 2001; 20: 413-420
        • Dröge W.
        Free radicals in the physiological control of cell function.
        Physiol. Rev. 2002; 82: 47-95
        • Joyce-Brady M.
        • Oakes S.M.
        • Wultrich D.
        • Laperche Y.
        Three alternative promoters of the rat γ-glutamyl transferase gene are active in developing lung and are differentially regulated by oxygen after birth.
        J. Clin. Invest. 1996; 97: 1774-1779
        • Crawford D.W.
        • Blankenhorn D.H.
        Arterial wall oxygenation, oxyradicals, and atherosclerosis.
        Atherosclerosis. 1991; 89: 97-108