Oxalic acid alters intracellular calcium in endothelial cells


      Patients with chronic renal failure (CRF) who undergo hemodialysis experience accelerated atherosclerosis and premature death. While the cause of uremic atherogenesis is unknown, we reported that uremic levels of oxalate, an excretory metabolite, severely inhibit proliferation and migration of human endothelial cells (EC) without affecting other cell types. Since the physical, cellular and molecular events of endothelial injury are clearly established as key factors in the development of plaque, and since inhibition of proliferation and migration would enhance endothelial injury, we have proposed that oxalate is an atherogenic toxin of uremia. In the current study, we used in situ cell counting and total DNA measurement to show that the inhibitory effect of oxalate on proliferation is exclusive to endothelial cells among human cell lines tested (endothelial cells, fibroblasts, aortic smooth muscle cells (SMC), glioblastoma and embryonic kidney cells). Using the fluorescent calcium indicators fura-2 and fluo-3, we correlated the inhibition of proliferation with a prolonged elevation in intracellular free calcium levels. We also demonstrated that all cells tested internalize Math Eq-oxalic acid. We conclude that plasma oxalate exerts its atherogenic effects by elevating intracellular calcium exclusively in endothelial cells and preventing re-endothelialization.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Luke R.G
        Chronic renal failure—a vasculopathic state.
        N. Engl. J. Med. 1998; 339: 841-843
        • Locatelli F
        • Bommer J
        • London G.M
        • Martin-Malo A
        • Wanner C
        • Yaqoob M
        • et al.
        Cardiovascular disease determinants in chronic renal failure: clinical approach and treatment.
        Nephrol. Dial. Transplant. 2001; 16: 459-468
        • Goldsmith D.J.A
        • Covic A
        Coronary artery disease in uremia: etiology, diagnosis and therapy.
        Kidney Int. 2001; 60: 2059-2078
        • Strandgaard S
        • Olesen J
        • Skinhoj E
        • Lassen N.A
        Autoregulation of brain circulation in severe arterial hypertension.
        Br. Med. J. 1973; 1: 507-510
        • Ross R
        The pathogenesis of atherosclerosis—an update.
        N. Engl. J. Med. 1986; 314: 488-500
        • Reidy M.A
        • Schwartz S.M
        Endothelial Regeneration. III. Time course of intimal changes after small defined injury to rat aortic endothelium.
        Lab. Invest. 1981; 44: 301-308
        • Fishman J.A
        • Ryan G.B
        • Karnovsky M.J
        Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening.
        Lab. Invest. 1975; 32: 339
        • Schwartz S.M
        • Haudenschild C.C
        • Eddy E.M
        Endothelial Regeneration. I. Quantitative analysis of initial stages of endothelial regeneration in rat aortic intima.
        Lab. Invest. 1978; 38: 568
        • Reidy M.A
        • Clowes A.W
        • Schwartz S.M
        Endothelial Regeneration. V. Inhibition of endothelial regrowth in arteries of rat and rabbit.
        Lab. Invest. 1983; 49: 569-575
        • Reidy M.A
        • Standaert D
        • Schwartz S.M
        Inhibition of endothelial cell regrowth. Cessation of aortic endothelial cell replication after balloon catheter denudation.
        Arteriosclerosis. 1982; 2: 216-220
        • Levin R.I
        • Kantoff P.W
        • Jaffe E.A
        Uremic levels of oxalic acid suppress the replication and migration of human endothelial cells.
        Arteriosclerosis. 1990; 10: 198-207
        • Levin R.I
        • Moscatelli D.A
        • Recht P.A
        Oxalate, a potential atherogenic toxin of uremia, inhibits endothelial proliferation induced by heparin-binding growth factors in vitro.
        Endothelium. 1993; 1: 179-192
      1. Williams HE, Smith Jr. LH. Primary hyperoxaluria. In: Stanbury JB, Wyngaarden JB, Frederickson DS, Goldstein JL, Brown MS, editors. The metabolic basis of inherited disease. NY: McGraw-Hill; 1983. p. 204–28.

        • Balcke P
        • Schmidt P
        • Zazgornik J
        • Kopsa H
        • Deutsch E
        Secondary oxalosis in chronic renal insufficiency.
        N. Engl. J. Med. 1980; 303: 944
        • Boer P
        • van Leersum L
        • Endeman H.J
        Determination of plasma oxalate with oxalate oxidase.
        Clin. Chim. Acta. 1984; 137: 53-60
        • Morgan S.H
        • Purkiss P
        • Watts R.W.E
        • Mansell M.A
        Oxalate dynamics in chronic renal failure: comparison with normal subjects and patients with primary hyperoxaluria.
        Nephron. 1987; 46: 253-257
        • France N.C
        • Holland P.T
        • Wallace M.R
        Contribution of dialysis to endogenous oxalate production in patients with chronic renal failure.
        Clin. Chem. 1994; 40: 1544-1548
        • Jaffe E.A
        • Nachman R.L
        • Becker C.G
        • Minick C.R
        Culture of human endothelial cells derived from umbilical veins.
        J. Clin. Invest. 1973; 52: 2745-2756
        • Levin R.I
        • Jaffe E.A
        • Weksler B.B
        • Tack-Goldman K
        Nitroglycerin stimulates synthesis of prostacyclin by cultured human endothelial cells.
        J. Clin. Invest. 1981; 67: 762-769
        • Cronstein B.N
        • Levin R.I
        • Belanoff J
        • Weissman G
        • Hirschhorn R
        Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells.
        J. Clin. Invest. 1986; 78: 760-770
        • Crissman H.A
        • Steinkamp J.A
        Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations.
        J. Cell Biol. 1973; 59: 766-771
        • Grynkiewicz G
        • Poenie M
        • Tsien R.Y
        A new generation of Ca2+ indicators with greatly improved fluorescence properties.
        J. Biol. Chem. 1985; 260: 3440-3450
        • Maxfield F.R
        Measurement of vacuolar pH and cytoplasmic calcium in living cells using fluorescence microscopy.
        Methods Enzymol. 1989; 173: 745-771
        • Chan P.H
        • Kerlan R
        • Fishman R.A
        Intracellular volume of osmotically regulated C-6 glioma cells.
        J. Neurosci. Res. 1982; 8: 67-72
        • Holian A
        • Deutsch C.J
        • Holian S.K
        • Daniele R.P
        • Wilson D.F
        Lymphocyte response to phytohemagglutinin: intracellular volume and intracellular [K+].
        J. Cell Physiol. 1979; 98: 137-144
        • Mezzano D
        • Tagle R
        • Pais E
        • Panes O
        • Perez M
        • Downey P
        • et al.
        Endothelial cell markers in chronic uremia: relationship with hemostatic defects and severity of renal failure.
        Thromb. Res. 1998; 88: 465-472
        • Schwartz S.M
        • Benditt E.P
        Clustering of replicating cells in aortic endothelium.
        Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 651-653
        • Wright H.P
        Mitosis patterns in aortic endothelium.
        Atherosclerosis. 1972; 15: 93-100
        • Schwartz S.M
        • Gajdusek C.M
        • Reidy M.A
        • Selden III, S.C
        • Haudenschild C.C
        Maintenance of integrity in aortic endothelium.
        Fed. Proc. 1980; 39: 2618-2625
        • Gunter T.E
        • Gunter K.K
        • Sheu S.-S
        • Gavin C.E
        Mitochondrial calcium transport: physiological and pathological relevance.
        Am. J. Physiol. 1994; 267: C313-C339
        • Farber J.L
        The role of calcium in cell death.
        Life Sci. 1981; 29: 1289-1295
        • Farber J.L
        Biology of disease. Membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis.
        Lab. Invest. 1982; 47: 114-123
        • Farber J.L
        The role of calcium ions in toxic cell injury.
        Environ. Health Perspect. 1990; 84: 107-111
        • Hunter D.R
        • Haworth R.A
        • Southard J.H
        Relationship between configuration, function and permeability in calcium-treated mitochondria.
        J. Biol. Chem. 1976; 251: 5069-5077
        • Ghosh T.K
        • Mullaney J.M
        • Tarazi F.I
        • Gill D.L
        GTP-activated communication between distinct inositol 1,4,5-trisphosphate-sensitive and -insensitive calcium pools.
        Nature. 1989; 340: 236-239
        • Ghosh T.K
        • Bian J
        • Gill D
        Sphingosine 1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium.
        J. Biol. Chem. 1994; 269: 22628-22635
        • Darby P.J
        • Kwan C.-Y
        • Daniel E.E
        Selective inhibition of oxalate-stimulated Ca2+ transport by cyclopiazonic acid and thapsigargin in smooth muscle microsomes.
        Can. J. Physiol. Pharmacol. 1996; 74: 182-192
        • Buc H.A
        • Augereau C
        • Demaugre F
        • Moncion A
        • Leroux J.P
        Influence of oxalate on the rate of the tricarboxylic acid cycle in rat hepatocytes.
        Biochim. Biophys. Acta. 1983; 763: 220-223