Advertisement

Influence of the −514C/T polymorphism in the promoter of the hepatic lipase gene on postprandial lipoprotein metabolism

      Abstract

      The −514C/T polymorphism located in the promoter region of the hepatic lipase gene mediates changes in the plasma levels of the enzyme. The aim of this study was to determine whether the presence of this polymorphism modifies the postprandial clearance of lipoproteins of intestinal origin. 51 normolipemic volunteers, homozygotes for the allele E3 of the apo E were selected (26 homozygotes for the C allele and 25 carriers of the T allele in both homozygote and heterozygote form). The subjects underwent a Vitamin A fat-loading test. Blood was drawn every hour until the 6th hour and every 2 h and 30 min until the 11th hour to determine cholesterol and plasma triglycerides as well as cholesterol, triglycerides (TG) and retinyl palmitate in triacylglycerol-rich lipoproteins (chylomicrons and chylomicron remnants). Carriers of the T allele showed significantly lower postprandial levels of apolipoprotein B (P<0.01), total TG in plasma (P<0.05), small TRL-TG (P<0.04), large TRL-TG (P<0.04) and small TRL-cholesterol (P<0.04) when compared to subjects homozygous for the C allele. Our data suggest that the T allele of the −514C/T polymorphism in the promoter region of the hepatic lipase gene is associated with a lower postprandial lipemic response.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jansen H.
        • Kalkman C.
        • Zonneveld A.J.
        • Hulsmann W.C.
        Secretion of triacylglycerol hydrolase activity by isolated parenchymal rat liver cells.
        FEBS Lett. 1979; 107: 299-302
        • Nilsson-Ehle P.
        • Garfinkel A.S.
        • Schotz M.C.
        Lipolytic enzymes and plasma lipoprotein metabolism.
        Annu. Rev. Biochem. 1980; 49: 667-693
        • Samir S.D.
        • Reiling P.
        The C-514T polymorphism in the human hepatic lipase gene promoter diminishes its activity.
        J. Lipid Res. 2000; 41: 155-158
        • Kuusi T.
        • Saarinen P.
        • Nikkila E.A.
        Evidence for the role of hepatic endothelial lipase in the metabolism of plasma high density lipoprotein in man.
        Atherosclerosis. 1980; 36: 589-593
        • Kinnunen P.K.J.
        • Ehnholm C.
        Effect of serum and C-apoproteins from very low density lipoproteins on human post-heparin plasma hepatic lipase.
        FEBS Letters. 1976; 65: 354-357
        • Demacker P.N.
        • Hijmans A.G.
        • Stalenhoef A.F.
        • Van’t L.A.
        Studies on the function of hepatic lipase in the cat after immunological blockade of the enzyme in vivo.
        Atherosclerosis. 1989; 69: 173-183
        • Sultan F.
        • Lagrange D.
        • Jansen H.
        • Griglio S.
        Inhibition of hepatic lipase activity impairs chylomicron remnant removal in rats.
        Biochim Biophys Acta. 1990; 1042: 150-152
        • Shafy S.
        • Brady S.E.
        • Bensadoun A.
        • Havel R.J.
        Role of hepatic lipase in the uptake and processing of chylomicrons remnants in rat liver.
        J. Lipid Res. 1994; 35: 709-720
        • Després J.P.
        Dyslipidaemia and obesity.
        Bailliere Clin Endoc Metab. 1994; 8: 629-660
        • Tikkanen M.J.
        • Nikkila E.A.
        • Bartiainen E.
        Natural estrogen as effective treatment for type-II hyperlipoproteinaemia in postmenopausal women.
        Lancet. 1978; 2: 490-491
        • Ehnholm C.
        • Huttunen J.K.
        • Kinnunen P.J.
        • Miettinen T.A.
        • Nikkila E.A.
        Effect of oxandrolone treatment on the activity of lipoprotein lipase, hepatic lipase and phospholipase A1 of human post heparin plasma.
        New Engl. J. Med. 1975; 292: 1314-1317
        • Huttunen J.K.
        • Ehnholm C.
        • Kekki M.
        • Nikkila E.A.
        Post heparin plasma lipoprotein lipase and hepatic lipase in normal subjects and patients with hipertrygliceridemia correlations to sex, age, and various parameters of triglyceride metabolism.
        Clin. Sci. Mol. Med. 1976; 50: 249-260
        • Williams P.T.
        • Krauss R.M.
        Associations of age: adiposity, menopause and alcohol intake with low-density lipoprotein subclasses.
        Arterioscler Thromb Vasc Biol. 1997; 17: 1082-1090
        • Vega G.L.
        • Clark L.T.
        • Tang A.
        • Marcovina S.
        • Grundy S.M.
        • Cohen J.C.
        Hepatic lipase activity is lower in African American men than in white American men: effects of 5′ flanking polymorphism in the hepatic lipase gene (LIPC).
        J. Lipid Res. 1998; 39: 228-232
        • Guerra R.
        • Wang J.
        • Grundy S.M.
        • Cohen J.C.
        A hepatic lipase (LIPC) allele associated with high plasma concentrations of high density lipoprotein cholesterol.
        Proc Nat Acad Sci USA. 1997; 94: 4532-4537
        • Zambon A.
        • Deeb S.S.
        • Hokanson J.E.
        • Brown B.G.
        • Brunzell J.D.
        Common variants in the promoter of the hepatic lipase gene are associated with lower levels of hepatic lipase activity, buoyant LDL, and higher HDL2 cholesterol.
        Arterioscler Thromb Vasc Biol. 1998; 18: 1723-1729
        • Deeb S.S.
        • Peng R.
        The C-514T polymorphism in the human lipase hepatic gene promoter diminishes its activity.
        J. Lip Res. 2000; 41: 155-158
        • Couture P.
        • Otvos J.D.
        • Cupples A.
        • et al.
        Associations of the C-514T polymorphism in the hepatic lipase gene with variations in lipoproteins subclass profiles. The Framingham Offspring Study.
        Arterioscler Thromb Vasc Biol. 2000; 20: 815-822
        • Krapp A.
        • Ahle S.
        • Kersting S.
        • et al.
        Hepatic lipase mediates the uptake of chylomicrons abs beta-VLDL into cells via the LDL receptor related protein (LRP).
        J. Lipid Res. 1996; 37: 926-936
        • Jansen S.
        • Chu G.
        • Ehnholm C.
        • Dallongeville J.
        • Nicaud V.
        • Talmud P.J.
        The T allele of the hepatic lipase promoter variant C-480T is associated with increased fasting lipids and HDL and increased preprandial and postprandial LpCIII:B.
        Arterioscler Thromb Vasc Biol. 1999; 19: 303-308
        • Bucolo G.
        • David H.
        Quantitative determination of serum triglycerides by use of enzymes.
        Clin Chem. 1973; 19: 476-482
        • Allain C.C.
        • Poon L.S.
        • Chang C.S.G.
        • Richmond W.
        • Fu P.C.
        Enzymatic determination of total serum cholesterol.
        Clin Chem. 1974; 20: 470-475
        • Riepponen P.
        • Marniemi J.
        • Rautaoja T.
        Immunoturbidimetric determination of apolipoproteins A-1 and B in serum.
        Scan J. Clin. Lab. Invest. 1987; 47: 739-744
        • Warnick R.
        • Benderson J.
        • Albers J.J.
        Dextran sulfate−Mg precipitation procedure for quantitation of high density lipoprotein cholesterol.
        Clin. Chem. 1982; 28: 1379-1388
        • Ruotolo G.
        • Zhang H.
        • Bentsianov V.
        • Le N.-A.
        Protocol for the study of the metabolism of retinyl esters in plasma lipoproteins during postprandial lipemia.
        J. Lipid Res. 1992; 33: 1541-1549
        • De Ruyter M.G.M.
        • De Leeheer A.P.
        Simultaneous determination of retinol and retinyl esters in serum or plasma by reversed−phase high performance liquid chromatography.
        Clin Chem. 1978; 24: 1920-1923
        • Karpe F.
        • Hamsten A.
        Determination of apolipoproteins B-48 and B-100 in triglyceride-rich lipoproteins by analytical SDS–PAGE.
        J. Lipid Res. 1994; 35: 1311-1317
        • Fan Y.
        • Laaksonen R.
        • Janatuinen T.
        • et al.
        Hepatic lipase gene variations related to coronary reactivity in healthy young men.
        Eur. J. Clin Invest. 2001; 31: 574-580
        • Calabresi L.
        • Cassinotti M.
        • Gianfranceschi G.
        • et al.
        Increased postprandial lipemia in Apo A-I Milano carriers.
        Arterioscler Thromb. 1993; 13: 521-528
        • López Miranda J.
        • Ordovas J.M.
        • Ostos M.A.
        • et al.
        Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein B.
        Arterioscler Thromb Vasc Biol. 1997; 17: 1765-1773
        • Ostos M.A.
        • López Miranda J.
        • Ordovas J.M.
        • et al.
        Dietary fat clearance is modulated by genetic variation in apolipoprotein A-IV gene locus.
        J. Lipid Res. 1998; 39: 2493-2500
        • Marı́n C.
        • López Miranda J.
        • Gómez P.
        • et al.
        Effects of the human apolipoprotein A-I promoter G-A mutation on postprandial lipoprotein metabolism.
        Am. J. Clin Nutr. 2002; 76: 319-325
        • Hodis H.N.
        Triglyceride-rich lipoprotein remnant particles and risk of atherosclerosis.
        Circulation. 1999; 99: 2852-2854
        • Kugiyama K.
        • Doi H.
        • Takazoe K.
        • et al.
        Remnant lipoproteins levels in fasting serum predict coronary events in patients with coronary artery disease.
        Circulation. 1999; 99: 2858-2860
        • Breckenridge W.C.
        • Little J.A.
        • Alaupovic P.
        • et al.
        Lipoprotein abnormalities associated with a familial deficiency of hepatic lipase.
        Atherosclerosis. 1982; 45: 161-179
        • Diard P.
        • Malewiak M.-I.
        • Lagrange D.
        • Griglio S.
        Hepatic lipase may act as a ligand in the uptake of artificial chylomicron remnant-like particles by isolated rat hepatocytes.
        Biochem J. 1994; 299: 889-894
        • Choi S.Y.
        • Goldberg I.J.
        • Curtiss L.K.
        • Cooper A.D.
        Interaction between apoB and hepatic lipase mediates the uptake of apoB-containing lipoproteins.
        J. Biol. Chem. 1998; 273: 20456-20462
        • Syvanne M.
        • Talmud P.J.
        • Humphries S.E.
        • et al.
        Determinants of postprandial lipemia in men with coronary artery disease and low levels of HDL cholesterol.
        J. Lipid Res. 1997; 38: 1463-1472
        • Weintraub M.S.
        • Eisenberg S.
        • Breslow J.L.
        Different patterns of postprandial lipoprotein metabolism in normal, type IIa, type III and type IV hyperlipoproteinemic individuals: effects of treatment with cholestyramine and gemfibrozil.
        J. Clin Invest. 1987; 79: 1110-1119
        • Katzel L.I.
        • Coon P.J.
        • Busby M.J.
        • Gottlieb S.O.
        • Krauss R.M.
        • Golberg A.P.
        Reduced HDL2 cholesterol subspecies and elevated postheparin hepatic lipase activity in older men with abdominal obesity and asymptomatic myocardial ischemia.
        Arterioscler Thromb Vasc Biol. 1992; 12: 814-823
        • Elbert D.L.
        • Warren R.J.
        • Barter P.J.
        • Mitchell A.
        Infusion of atherogenic lipoprotein particles increases hepatic lipase activity in the rabbit.
        J. Lipid Res. 1993; 34: 89-94