Advertisement

The antiatherogenic potential of oat phenolic compounds

      Abstract

      Avenanthramides are phenolic antioxidants, which are present in oats. Avenanthramides A, B, and C are the major constituents of the total soluble antioxidant phenolic compounds in oats. We tested the potential antiatherogenic activity of partially purified avenanthramides from oats by examining their effects on adhesion of monocytes to human aortic endothelial cell (HAEC) monolayers, expression of adhesion molecules, and production of proinflammatory cytokines and chemokines by HAEC. The oat avenanthramides mixture was prepared and partially purified by column chromatography. This avenanthramide-enriched mixture (AEM) had no toxicity to HAEC as tested up to 40 ng/ml. The pre-incubation of HAEC with 4, 20, and 40 ng/ml AEM for 24 h significantly decreased adhesion of U937 monocytic cells to interleukin (IL)-1β-stimulated HAEC in a concentration-dependent manner. Pre-incubation of HAEC with AEM at 20 and 40 μg/ml, but not at 4 μg/ml, for 24 h significantly suppressed IL-1β-stimulated expressions of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin and the secretion of proinflammatory cytokines IL-6, chemokines IL-8 and monocyte chemoattractant protein (MCP)-1. These data provide evidence for the potential anti-inflammatory and antiatherogenic effects of antioxidant avenanthramides present in oats.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Meydani M
        Nutrition, immune cells, and atherosclerosis.
        Nutr. Rev. 1998; 56: S177-S182
        • Stemme S
        • Hansson G.K
        Immune mechanisms in atherogenesis.
        Ann. Med. 1994; 26: 141-146
        • Dustin M.L
        • Rothlein R
        • Bhan A.K
        • Dinarello C.A
        • Springer T.A
        Induction by IL-1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1).
        J. Immunol. 1986; 137: 245-254
        • Collins T
        Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion.
        Lab. Invest. 1993; 68: 499-508
        • Strieter R.M
        • Koch A.E
        • Antony V.B
        • et al.
        The immunopathology of chemotactic cytokines: the role of interleukin-8 and monocyte chemoattractantprotein-1.
        J. Lab. Clin. Med. 1994; 123: 183-197
        • Cybulsky M.I
        • Gimbrone Jr., M.A
        Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis.
        Science. 1991; 251: 788-791
        • Li H
        • Cybulsky M.I
        • Gimbrone Jr., M.A
        • Libby P
        An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium.
        Arterioscler. Thromb. 1993; 13: 197-204
        • Reape T.J
        • Groot P.H
        Chemokines and atherosclerosis.
        Atherosclerosis. 1999; 147: 213-225
        • Xu L
        • Kelvin D.J
        • Ye G.Q
        • et al.
        Modulation of IL-8 receptor expression on purified human T lymphocytes is associated with changed chemotactic responses to IL-8a.
        J. Leuk. Biol. 1995; 57: 335-342
        • Yue T.L
        • Wang X
        • Sung C.P
        • et al.
        Interleukin-8: a mitogen and chemoattractant for vascular smooth muscle cells.
        Circ. Res. 1994; 75: 1-7
        • Koch A.E
        • Polverini P.J
        • Kunkel S.L
        • et al.
        Interleukin-8 as a macrophage-derived mediator of angiogenesis.
        Science. 1992; 258: 1798-1801
        • Luster A.D
        Chemokines—chemotactic cytokines that mediate inflammation.
        N. Engl. J. Med. 1998; 338: 436-445
        • Graves D.T
        • Jiang Y
        Chemokines, a family of chemotactic cytokines.
        Crit. Rev. Oral Biol. Med. 1995; 6: 109-118
        • Onozaki K
        • Akiyama Y
        • Okano A
        • et al.
        Synergistic regulatory effects of interleukin-6 and interleukin-1 on the growth and differentiation of human and mouse myeloid leukemic cell lines.
        Cancer Res. 1989; 49: 3602-3607
        • Ikeda U
        • Ikeda M
        • Oohara T
        • et al.
        Interleukin stimulates growth of vascular smooth muscle cells in a PDGF-dependent manner.
        Am. J. Physiol. 1991; 260: H1713-H1717
        • Loppnow H
        • Libby P
        Proliferating or interleukin-1-activated human vascular smooth muscle cells secrete copious interleukin-6.
        J. Clin. Invest. 1990; 85: 731-738
        • Wu D
        • Koga T
        • Martin K.R
        • Meydani M
        Effect of Vitamin E on human aortic endothelial cell production of chemokines and adhesion to monocytes.
        Atherosclerosis. 1999; 147: 297-307
        • Martin K.R
        • Wu D
        • Meydani M
        The effect of carotenoids on the expression of cell surface adhesion molecules and binding of monocytes to human aortic endothelial cells.
        Atherosclerosis. 2000; 150: 265-274
        • Devaraj S
        • Li D
        • Jialal I
        The effects of alpha tocopherol supplementation on monocyte function. Decreased lipid oxidation, interleukin-1-beta secretion, and monocyte adhesion to endothelium.
        J. Clin. Invest. 1996; 98: 756-763
        • Koga T
        • Meydani M
        Effect of plasma metabolites of (+)-catechin and quercetin on monocyte adhesion to human aortic endothelial cells.
        Am. J. Clin. Nutr. 2001; 73: 941-948
        • Anderson J.W
        Dietary fibre % complex carbohydrate and coronary artery disease.
        Can. J. Cardiol. 1995; 11: 55G-62G
        • Katz D.L
        • Nawaz H
        • Boukhalil J
        • et al.
        Effects of oat and wheat cereals on endothelial responses.
        Prev. Med. 2001; 33: 476-484
      1. Collins FW. Oat phenolics: structure, occurence and function. In: Webster FH, editor. Oats: chemistry and technology. St. Paul, MN: American Association of Cereal Chemists; 1986. p. 227–95.

        • Collins F.W
        Oatphenolics: avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls.
        J. Agric. Food Chem. 1989; 37: 60-66
        • Collins F.W
        • McLachlan D.C
        • Blackwell B.A
        Oat phenolics: avenalumic acids, a new group of bound phenolics acids from oat groats and hulls.
        Cereal Chem. 1991; 68: 184-189
        • Collins F.W
        • Mullin W.J
        High-performance liquid chromatographic determination of avenanthramides, N-aroylanthranilic acid alkaloids from oats.
        J. Chromatogr. 1988; 45: 363-370
        • Dimberg L.H
        • Theander O
        • Lingnert H
        Avenanthramides—a group of phenolic antioxidants in oats.
        Cereal Chem. 1993; 70: 637-641
        • Peterson D.M
        • Hahn M
        • Emmons C.L
        Oat avenanthramides exhibit antioxidant activities in vitro.
        Food Chem. 2002; 79: 473-478
        • Bratt K
        • Sunnerheim K
        • Bryngelsson S
        • et al.
        Avenanthramides in oats (Avena sativa L.) and structure-antioxidant activity relationships.
        J. Agric. Food Chem. 2003; 51: 594-600
        • Emmons C.L
        • Peterson D.M
        • Paul G.L
        Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants.
        J. Agric. Food Chem. 1999; 47: 4894-4898
        • Peterson D.M
        • Emmons C.L
        • Hibbs A.H
        Phenolic antioxidants and antioxidant activity in pearling fractions of oat groats.
        J. Cereal Sci. 2001; 33: 97-103
        • Emmons C.L
        • Peterson D.M
        Antioxidant activity and phenolic content of oat as affected by cultivar and location.
        Crop Sci. 2001; 41: 1676-1681
        • Krishnaswamy G
        • Kelley J
        • Yerra L
        • Smith J.K
        • Chi D.S
        Human endothelium as a source of multifunctional cytokines: molecular regulation and possible role in human disease.
        J. Interferon Cytokine Res. 1999; 19: 91-104
        • DiCorleto P.E
        • de la Motte C.A
        Characterization of the adhesion of the human monocytic cell line U937 to cultured endothelial cells.
        J. Clin. Invest. 1985; 75: 1153-1161
        • Vaporciyan A.A
        • Jones M.L
        • Ward P.A
        Rapid analysis of leukocyte–endothelial adhesion.
        J. Immunol. Methods. 1993; 159: 93-100
      2. Collins FW, Fielder DA, Starr AB, Redmond MJ, D’Attilio RZ, Process for the isolation, purification and recovery of non-polar extractives. US Patent #6, 495, 140, 2002.

        • Meydani S.N
        • Meydani M
        • Blumberg J.B
        • et al.
        Vitamin E supplementation and in vivo immune response in healthy elderly subjects: a randomized controlled trial.
        JAMA. 1997; 277: 1366-1380
        • Yue T.L
        • McKenna P.J
        • Gu J.L
        • Feuerstein G.Z
        Interleukin-8 is chemotactic for vascular smooth muscle cells.
        Eur. J. Pharmacol. 1993; 240: 81-84
        • Apostolopoulos J
        • Davenport P
        • Tipping P.G
        Interleukin-8 production by macrophages from atheromatousplaques.
        Arterioscler. Thromb. Vasc. Biol. 1996; 16: 1007-1012
        • Nakae H
        • Endo S
        • Inada K
        • Kasai T
        • Yoshida M
        Significance of alpha-tocopherol and interleukin-8 in septic adult respiratory distress syndrome.
        Res. Commun. Chem. Pathol. Pharmacol. 1994; 84: 197-202
        • Simonini A
        • Moscucci M
        • Muller D.W
        • et al.
        IL-8 is an angiogenic factor in human coronary atherectomy tissue.
        Circulation. 2000; 101: 1519-1526
        • Berkhout T.A
        • Sarau H.M
        • Moores K
        • et al.
        Cloning, in vitro expression, and functional characterization of a novel human CC chemokine of the monocyte chemotactic protein (MCP) family (MCP-4) that binds and signals through the CC chemokine receptor 2B.
        J. Biol. Chem. 1997; 272: 16404-16413
        • Cushing S.D
        • Berliner J.A
        • Valente A.J
        • et al.
        Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells.
        Proc. Natl. Acad. Sci. U.S.A. 1990; 87: 5134-5138
        • Wilcox J.N
        • Nelken N.A
        • Coughlin S.R
        • Gordon D
        • Schall T.J
        Local expression of inflammatory cytokines in human atherosclerotic plaques.
        J. Atheroscler. Thromb. 1994; 1: S10-S13
        • Nelken N.A
        • Coughlin S.R
        • Gordon D
        • Wilcox J.N
        Monocyte chemoattractantprotein-1 in human atheromatousplaques.
        J. Clin. Invest. 1991; 88: 1121-1127
        • Yokota T
        • Hansson G.K
        Immunological mechanisms in atherosclerosis.
        J. Intern. Med. 1995; 238: 479-489
        • Watson C
        • Whittaker S
        • Smith N
        • et al.
        IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes.
        Clin. Exp. Immunol. 1996; 105: 112-119
        • Libby P
        • Hansson G.K
        Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions.
        Lab. Invest. 1991; 64: 5-15
        • Basha B.J
        • Sowers J.R
        Atherosclerosis: an update.
        Am. Heart J. 1996; 131: 1192-1202
        • Krieglstein C.F
        • Granger D.N
        Adhesion molecules and their role in vascular disease.
        Am. J. Hypertens. 2001; 14: 44S-54S
        • Tedgui A
        • Bernard C
        Cytokines, immuno-inflammatory response and atherosclerosis.
        Eur. Cytokine Netw. 1994; 5: 263-270
        • Printseva O
        • Peclo M.M
        • Gown A.M
        Various cell types in human atherosclerotic lesions express ICAM-1. Further immunocytochemical and immunochemical studies employing monoclonal antibody 10F3.
        Am. J. Pathol. 1992; 140: 889-896
        • Poston R.N
        • Haskard D.O
        • Coucher J.R
        • Gall N.P
        • Johnson-Tidey R.R
        Expression of intercellular adhesion molecule-1 in atherosclerotic plaques.
        Am. J. Pathol. 1992; 140: 665-673
        • Whelan J
        • Ghersa P
        • Hooft van Huijsduijnen R
        • et al.
        An NF kappa B-like factor is essential but not sufficient for cytokine induction of endothelial leukocyte adhesion molecule 1 (ELAM-1) gene transcription.
        Nucl. Acids Res. 1991; 19: 2645-2653
        • Collins T
        • Read M.A
        • Neish A.S
        • et al.
        Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers.
        FASEB J. 1995; 9: 899-909
        • Christman J.W
        • Lancaster L.H
        • Blackwell T.S
        Nuclear factor kappa B: a pivotal role in the systemic inflammatory response syndrome and new target for therapy.
        Intensive Care Med. 1998; 24: 1131-1138
        • Schreck R.K
        • Alberman K
        • Baeuerle P.A
        Nuclear factor κB: an oxidative stree-response transcription factor of eukaryotic cells.
        Free Radic. Res. Commun. 1992; 17: 221-237
        • Van den Berg R
        • Haenen G.R
        • van den Berg H
        • Bast A
        Transcription factor NF-kappaB as a potential biomarker for oxidative stress.
        Br. J. Nutr. 2001; 86: S121-S127
        • Mirochnitchenko O
        • Inouye M
        Effect of overexpression of human Cu, Zn superoxide dismutase in transgenic mice on macrophage functions.
        J. Immunol. 1996; 156: 1578-1586
        • Bell S
        • Goldman V.M
        • Bistrian B.R
        • et al.
        Effect ofbeta-glucan from oats and yeast on serum lipids.
        Crit. Rev. Food Sci. Nutr. 1999; 39: 189-202
        • Truswell A.S
        Dietary fibre and plasma lipids.
        Eur. J. Clin. Nutr. 1995; 49: S105-S109
        • Tamai H
        • Katoh K
        • Yamaguchi T
        • et al.
        The impact of tranilast on restenosis after coronary angioplasty: the Second Tranilast Restenosis Following Angioplasty Trial (TREAT-2).
        Am. Heart J. 2002; 143: 506-513
        • Rosanio S
        • Tocchi M
        • Patterson C
        • Runge M.S
        Prevention of restenosis after percutaneous coronary interventions: the medical approach.
        Thromb. Haemost. 1999; 82: 164-170
        • Slobodzian D.K
        • Hsieh J.Y
        • Bayne W.F
        Simultaneous determination of tranilast and metabolites in plasma and urine using high-performance liquid chromatography.
        J. Chromatogr. 1985; 345: 345-354
        • Miyazawa K
        • Kikuchi S
        • Fukuyama J
        • Hamano S
        • Ujiie A
        Inhibition of PDGF- and TGF-beta-1-induced collagen synthesis, migration and proliferation by tranilast in vascular smooth muscle cells from spontaneously hypertensive rats.
        Atherosclerosis. 1995; 118: 213-221
        • Takahashi A
        • Taniguchi T
        • Ishikawa Y
        • Yokoyama M
        Tranilast inhibits vascular smooth muscle cell growth and intimal hyperplasia by induction of p21(waf1/cip1/sdi1) and p53.
        Circ. Res. 1999; 84: 543-550
        • Spiecker M
        • Lorenz I
        • Marx N
        • Darius H
        Tranilast inhibits cytokine-induced nuclear factor kappaB activation in vascular endothelial cells.
        Mol. Pharmacol. 2002; 62: 856-863
        • Chikaraishi A
        • Hirahashi J
        • Takase O
        • et al.
        Tranilast inhibits interleukin-1-beta-induced monocyte chemoattractantprotein-1 expression in rat mesangial cells.
        Eur. J. Pharmacol. 2001; 427: 151-158