Advertisement

SNPs at the APOA5 gene account for the strong association with hypertriglyceridaemia at the APOA5/A4/C3/A1 locus on chromosome 11q23 in the Northern Irish population

      Abstract

      Serum triglyceride levels (TG) are important independent risk factors for coronary heart disease. The apolipoproteins C-III (apoCIII) and A-V (apoAV) are central to normal TG metabolism and the complete sequence analysis of these genes was carried out in severe cases (TG > 9 mmol/l) and controls (TG < 2 mmol/l). A total of 53 SNPs were identified in these genes with 17 being novel to this study. Further analysis defined four APOC3 SNPs and three APOA5 SNPs showing strong association with TG levels. Analysis of the two major SNPs from APOA5 [c.56C > G, c.-3A > G] and from APOC3 [c.102C > T, c.340C > G] using THESIAS has identified two major haplotypes relative to the most common CACC haplotype showing very strong association with hypertriglyceridaemia, CGTG and GATC (odds ratio 7.45 and 5.26). Logistic regression analysis of these four SNPs revealed that, carriage of the APOA5 c.56 G allele (odd ratios 4.49) and the APOA5 c.-3 G allele (odds ratio 3.23) were strong independent predictors of hypertriglyceridaemia (P < 0.001), whereas in contrast, carriage of the APOC3 c102 T allele (odds ratio 1.35) and the APOC3 c.340 G allele (odds ratio 1.37), did not show any significant effects that were independent of APOA5.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Assmann G.
        • Schulte H.
        • von Eckardstein A.
        Hypertriglyceridemia and elevated lipoprotein(a) are risk factors for major coronary events in middle-aged men.
        Am J Cardiol. 1996; 77: 1179-1184
        • Ginsberg H.N.
        Hypertriglyceridemia: new insights and new approaches to pharmacologic therapy.
        Am J Cardiol. 2001; 87: 1174-1180
        • Busch C.P.
        • Hegele R.A.
        Variation of candidate genes in triglyceride metabolism.
        J Cardiovasc Risk. 2000; 7: 309-315
        • Groenendijk M.
        • Cantor R.M.
        • de Bruin T.W.A.
        • Dallinga-Thie G.M.
        The apoAI-CIII-AIV gene cluster.
        Atherosclerosis. 2001; 157: 1-11
        • Rees A.
        • Shoulders C.C.
        • Stocks J.
        • Galton D.J.
        • Baralle F.E.
        DNA polymorphism adjacent to human apoprotein A-1 gene: relation to hypertriglyceridaemia.
        Lancet. 1983; 1: 444-446
        • Talmud P.J.
        • Humphries S.E.
        Apolipoprotein C-III gene variation and dyslipidaemia.
        Curr Opin Lipidol. 1997; 8: 154-158
        • Pennacchio L.A.
        • Olivier M.
        • Hubacek J.A.
        • et al.
        An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing.
        Science. 2001; 294: 169-173
        • Pennacchio L.A.
        • Olivier M.
        • Hubacek J.A.
        • Krauss R.M.
        • Rubin E.M.
        • Cohen J.C.
        Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels.
        Hum Mol Genet. 2002; 11: 3031-3038
        • Talmud P.J.
        • Hawe E.
        • Martin S.
        • et al.
        Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides.
        Hum Mol Genet. 2002; 11: 3039-3046
        • Johnson G.C.
        • Esposito L.
        • Barratt B.J.
        • et al.
        Haplotype tagging for the identification of common disease genes.
        Nat Genet. 2001; 29: 233-237
        • Stengard J.H.
        • Clark A.G.
        • Weiss K.M.
        • et al.
        Contributions of 18 additional DNA sequence variations in the gene encoding apolipoprotein E to explaining variation in quantitative measures of lipid metabolism.
        Am J Hum Genet. 2002; 71: 501-517
        • Tiret L.
        • Poirier O.
        • Nicaud V.
        • et al.
        Heterogeneity of linkage disequilibrium in human genes has implications for association studies of common diseases.
        Hum Mol Genet. 2002; 11: 419-429
        • Jeanpierre M.
        A rapid method for purification of DNA from blood.
        Nucleic Acid Res. 1987; 15: 9611
        • den Dunnen J.T.
        • Paalman M.H.
        Standardizing mutation nomenclature: why bother?.
        Hum Mutat. 2003; 22: 181-182
        • Rothman K.J.
        No adjustments are needed for multiple comparisons.
        Epidemiology. 1990; 1: 43-46
        • Perneger T.V.
        What's wrong with Bonferroni adjustments.
        Br Med J. 1998; 316: 1236-1238
        • Perneger T.V.
        Adjusting for multiple testing in studies is less important than other concerns.
        Br Med J. 1999; 318: 1288
        • Stephens M.
        • Smith N.J.
        • Donnelly P.
        A new statistical method for haplotype reconstruction from population data.
        Am J Hum Genet. 2001; 68: 978-989
        • Schneider S.
        • Roessli D.
        • Excoffier L
        Arlequin version 2.000: A software for population genetics data analysis.
        Genetics and Biometry Laboratory, University of Geneva, Switzerland2000
        • Zhao J.H.
        • Sham P.C.
        Faster haplotype frequency estimation using unrelated subjects.
        Hum Hered. 2002; 53: 36-41
        • Tregouet D.A.
        • Escolano S.
        • Tiret L.
        • Mallet A.
        • Golmard J.L.
        A new algorithm for haplotype-based association analysis: the Stochastic-EM algorithm.
        Ann Hum Genet. 2004; 68: 165-177
        • Pennacchio L.A.
        • Rubin E.M.
        Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice.
        Arterioscler Thromb Vasc Biol. 2003; 23: 529-534
        • Mathews D.H.
        • Sabina J.
        • Zuker M.
        • Turner D.H.
        Expanded sequence dependence of thermodynamics parameters improves prediction of RNA secondary structure.
        J Mol Biol. 1999; 288: 911-940
        • Olivieri O.
        • Stranieri C.
        • Bassi A.
        • et al.
        ApoC-III gene polymorphisms and risk of coronary artery disease.
        J Lipid Res. 2002; 43: 1450-1457
        • Tilly P.
        • Sass C.
        • Vincent-Viry M.
        • Aguillon D.
        • Siest G.
        • Visvikis S.
        Biological and genetic determinants of serum apoC-III concentration: reference limits from the Stanislas Cohort.
        J Lipid Res. 2003; 44: 430-436
        • Dallongeville J.
        • Meirhaeghe A.
        • Cottel D.
        • Fruchart J.C.
        • Amouyel P.
        • Helbecque N.
        Gender related association between genetic variations of APOC-III gene and lipid and lipoprotein variables in northern France.
        Atherosclerosis. 2000; 150: 149-157
        • O’Brien R.M.
        • Granner D.K.
        Regulation of gene expression by insulin.
        Physiol Rev. 1996; 76: 1109-1161
        • Prieur X.
        • Coste H.
        • Rodriguez J.C.
        The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element.
        J Biol Chem. 2003; 278: 25468-25480