Pleiotropic QTL on chromosome 19q13 for triglycerides and adiposity: The HERITAGE family study


      Motivated by strong correlations between plasma levels of triglycerides (TG) and adiposity traits, we conducted a series of bivariate genome-wide linkage analyses of TG with body mass index (BMI), total fat mass (FAT), percentage of body fat (FATPC), and abdominal subcutaneous fat (ASF). Maximum lod scores of 3.3, 3.0, 2.2 and 2.4, respectively, were found on chromosome 19q13. This linkage region includes the APOE gene, a predictor of variation in lipid-lipoprotein levels, and the hormone-sensitive lipase (LIPE) gene, a key enzyme in the mobilization of fatty acids from triglyceride stores. In addition, the adiposity measures together with the APOE marker showed significant association with TG levels (p = 0.02 to p = 0.03). In summary, these results suggest that one or more QTLs in the 19q13 region jointly influence TG levels and adiposity. Polymorphisms in the APOE gene, and possibly LIPE gene, appear to be strong candidates for the source of this pleiotropic QTL.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • American Heart Association
        Heart Disease and Stroke Statistics—2005 Update.
        American Heart Association, Dallas, Tex2005
        • Jørgensen M.E.
        • Glumer C.
        • Bjerregaard P.
        • et al.
        Grennland population study obesity and central fat pattern among Greenland inuit and a general population of Denmark (Inter99): relationship to metabolic risk factors.
        Int J Obes Relat Metab Disord. 2003; 27: 1507-1515
        • Kuzawa C.W.
        • Adair L.S.
        • Avila J.L.
        • et al.
        Atherogenic lipid profiles in Filipino adolescents with low body mass index and low dietary fat intake.
        Am J Hum Biol. 2003; 15: 688-696
        • Williams J.T.
        • Van Eerdewegh P.
        • Almasy L.
        • Blangero J.
        Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. I. likelihood formulation and simulation results.
        Am J Hum Genet. 1999; 65: 1134-1147
        • Bouchard C.
        • Leon A.S.
        • Rao D.C.
        • et al.
        The HERITAGE family study. Aims, design, and measurement protocol.
        Med Sci Sports Exerc. 1995; 27: 721-729
        • Després J.P.
        • Gagnon J.
        • Bergeron J.
        • et al.
        Plasma post-heparin lipase activities in the HERITAGE Family Study: the reproducibility, gender differences, and associations with lipoprotein levels. HEalth, RIsk factors, exercise training and GEnetics.
        Clin Biochem. 1999; 32: 157-165
        • Wilmore J.H.
        • Stanforth P.R.
        • Domenick M.A.
        • et al.
        Reproducibility of anthropometric and body composition measurements: the HERITAGE family study.
        Int J Obes Relat Metab Disord. 1997; 21: 297-303
        • Chagnon Y.C.
        • Rice T.
        • Pérusse L.
        • et al.
        Genomic scan for genes affecting body composition before and after training in caucasians from HERITAGE.
        J Appl Physiol. 2001; 90: 1777-1787
        • Garenc C.
        • Pérusse L.
        • Chagnon Y.C.
        • et al.
        The hormone-sensitive lipase gene and body composition: the HERITAGE family study.
        Int J Obes Relat Metab Disord. 2002; 26: 220-227
        • Leon A.S.
        • Togashi K.
        • Rankinen T.
        • et al.
        Association of apolipoprotein E polymorphism with blood lipids and maximal oxygen uptake in the sedentary state and after exercise training in the HERITAGE family study.
        Metabolism. 2004; 53: 108-116
        • Almasy L.
        • Blangero J.
        Multipoint quantitative-trait linkage analysis in general pedigrees.
        Am J Hum Genet. 1998; 62: 1198-1211
        • Amos C.
        • de Andrade M.
        • Zhu D.
        Comparison of multivariate tests for genetic linkage.
        Hum Hered. 2001; 51: 133-144
        • Almasy L.
        • Dyer T.D.
        • Blangero J.
        Bivariate quantitative trait linkage analysis: pleiotropy versus co-incident linkages.
        Genet Epidemiol. 1997; 14: 953-958
      1. Feitosa MF, Rice T, Rankinen T, et al. Evidence of QTLs on chromosomes 13q, 14q and 10p for triglycerides before and after 20 weeks of exercise training: The HERITAGE Family Study. Atherosclerosis; 2005, in press.

        • Rice T.
        • Chagnon Y.C.
        • Borecki I.B.
        • et al.
        A genome-wide linkage scan for abdominal subcutaneous and visceral fat in black and white families: the HERITAGE family study.
        Diabetes. 2002; 51: 848-855
        • McKenney J.M.
        Update on the national cholesterol education program adult treatment panel III guidelines: getting to goal.
        Pharmacotherapy. 2003; 23: 26S-33S
        • Beekman M.
        • Heijmans B.T.
        • Martin N.G.
        • et al.
        Evidence for a QTL on chromosome 19 influencing LDL cholesterol levels in the general population.
        Eur J Hum Genet. 2003; 11: 845-850
        • Klos K.L.
        • Kardia S.L.
        • Ferrell R.E.
        • et al.
        Genome-wide linkage analysis reveals evidence of multiple regions that influence variation in plasma lipid and apolipoprotein levels associated with risk of coronary heart disease.
        Arterioscler Thromb Vasc Biol. 2001; 21: 971-978
        • Elbein S.C.
        • Hasstedt S.J.
        Quantitative trait linkage analysis of lipid-related traits in familial type 2 diabetes: evidence for linkage of triglyceride levels to chromosome 19q.
        Diabetes. 2002; 51: 528-535
        • Bossé Y.
        • Chagnon Y.C.
        • Després J.P.
        • et al.
        Genome-wide linkage scan reveals multiple susceptibility loci influencing lipid and lipoprotein levels in the Québec family study.
        J Lipid Res. 2004; 45: 419-426
        • Ober C.
        • Abney M.
        • McPeek M.S.
        The genetic dissection of complex traits in a founder population.
        Am J Hum Genet. 2001; 69: 1068-1079
        • Rainwater D.L.
        • Almasy L.
        • Blangero J.
        • et al.
        A genome search identifies major quantitative trait loci on human chromosomes 3 and 4 that influence cholesterol concentrations in small LDL particles.
        Arterioscler Thromb Vasc Biol. 1999; 19: 777-783
        • Pérusse L.
        • Rankinen T.
        • Zuberi A.
        • et al.
        The human obesity gene map: the 2004 update.
        Obes Res. 2005; 13: 381-490
        • Allison D.B.
        • Thiel B.
        • St Jean P.
        • et al.
        Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages.
        Am J Hum Genet. 1998; 63: 1190-1201
        • Reilly S.L.
        • Ferrell R.E.
        • Kottke B.A.
        • Sing C.F.
        The gender-specific apolipoprotein E genotype influence on the distribution of plasma lipids and apolipoproteins in the population of Rochester, Minnesota. II. Regression relationships with concomitants.
        Am J Hum Genet. 1992; 51: 1311-1324
        • Sing C.F.
        • Davignon J.
        Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation.
        Am J Hum Genet. 1985; 37: 268-285
        • Saito H.
        • Lund-Katz S.
        • Phillips M.C.
        Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins.
        Prog Lipid Res. 2004; 43: 350-380
        • Yeaman S.J.
        Hormone-sensitive lipase--a multipurpose enzyme in lipid metabolism.
        Biochim Biophys Acta. 1990; 1052: 128-132
        • Lavebratt C.
        • Ryden M.
        • Schalling M.
        • et al.
        The hormone-sensitive lipase i6 gene polymorphism and body fat accumulation.
        Eur J Clin Invest. 2002; 32: 938-942
        • Friedlander Y.
        • Talmud P.J.
        • Edwards K.L.
        • et al.
        Sib-pair linkage analysis of longitudinal changes in lipoprotein risk factors and lipase genes in women twins.
        J Lipid Res. 2000; 41: 1302-1309
        • Ray H.
        • Beylot M.
        • Arner P.
        • et al.
        The presence of a catalytically inactive form of hormone-sensitive lipase is associated with decreased lipolysis in abdominal subcutaneous adipose tissue of obese subjects.
        Diabetes. 2003; 52: 1417-1422