Advertisement

Lethal and severe coronary arteritis in DBA/2 mice induced by fungal pathogen, CAWS, Candida albicans water-soluble fraction

      Abstract

      CAWS is a microbial pathogen-associated molecular patterns (PAMPs) produced by Candida albicans. CAWS is a mannoprotein–beta-glucan complex and secreted into the culture supernatant. CAWS has various biological effects, causing acute shock and disrupting vascular permeability. Intraperitoneal administration of CAWS induces coronary arteritis in various strains of inbred mice. The CAWS-induced coronary arteritis is strain-dependent and most severe in DBA/2 mice with a significant number of these animals expiring with cardiomegaly during the observation period. In vivo and in vitro, splenocytes of DBA/2 mice produced various cytokines, such as IL-6, TNF-α, and IFN-γ in response to CAWS. GM-CSF was also produced in response to CAWS. The production of cytokines was significantly enhanced in the presence of recombinant GM-CSF. In contrast, anti-GM-CSF significantly reduced the production of TNF-α and IFN-γ. Augmented production of cytokines in response to CAWS would be a key to the severity of coronary arteritis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ross R.
        Atherosclerosis — an inflammatory disease.
        N Engl J Med. 1999; 340: 115-126
        • Sattar N.
        Inflammation and endothelial dysfunction: intimate companions in the pathogenesis of vascular disease?.
        Clin Sci (London). 2004; 106: 443-445
        • Prasad Y.
        • Bhalodkar N.C.
        Aortic sclerosis — a marker of coronary atherosclerosis.
        Clin Cardiol. 2004; 27: 671-673
        • Archacki S.
        • Wang Q.
        Expression profiling of cardiovascular disease.
        Hum Genomics. 2004; 1: 355-370
        • Gollapudi R.R.
        • Teirstein P.S.
        • Stevenson D.D.
        • Simon R.A.
        Aspirin sensitivity: implications for patients with coronary artery disease.
        JAMA. 2004; 292: 3017-3023
        • Ridker P.M.
        • Cushman M.
        • Stampfer M.J.
        • Tracy R.P.
        • Hennekens C.H.
        Inflammation, aspirin, and therisk of cardiovascular disease in apparently healthy men.
        N Engl J Med. 1997; 336: 973-979
        • Kharbanda R.K.
        • Walton B.
        • Allen M.
        • et al.
        Prevention of inflammation-induced endothelial dysfunction: a novel vasculo-protective action of aspirin.
        Circulation. 2002; 105: 2600-2604
        • Hingorani A.D.
        • Cross J.
        • Kharbanda R.K.
        • et al.
        Acute systemic inflammation impairs endothelium-dependent dilatation in humans.
        Circulation. 2000; 102: 994-999
        • Weijenberg M.P.
        • Feskens E.J.
        • Kromhout D.
        White blood cell count and the risk of coronary heart disease and all-cause mortality in elderly men.
        Arterioscler Thromb Vasc Biol. 1996; 16: 499-503
        • Kougias P.
        • Chai H.
        • Lin P.H.
        • Yao Q.
        • Lumsden A.B.
        • Chen C.
        Defensins and cathelicidins: neutrophil peptides with roles in inflammation, hyperlipidemia and atherosclerosis.
        J Cell Mol Med. 2005; 9: 3-10
        • Zalokar J.B.
        • Richard J.L.
        • Claude J.R.
        Leukocyte count, smoking, and myocardial infarction.
        N Engl J Med. 1981; 304: 308-465
        • Mohacsi A.
        • Kozlovszky B.
        • Kiss I.
        • Seres I.
        • Fulop Jr., T.
        Neutrophils obtained from obliterative atherosclerotic patients exhibit enhanced resting respiratory burst and increased degranulation in response to various stimuli.
        Biochim Biophys Acta. 1996; 1316: 210-216
        • Nedeljkovic Z.S.
        • Gokce N.
        • Loscalzo J.
        Mechanisms of oxidative stress and vascular dysfunction.
        Postgrad Med J. 2003; 79: 195-199
        • Haddy N.
        • Sass C.
        • Droesch S.
        • et al.
        IL-6, TNF-alpha and atherosclerosis risk indicators in a healthy family population: the STANISLAS cohort.
        Atherosclerosis. 2003; 170: 277-283
        • Bennermo M.
        • Held C.
        • Stemme S.
        • et al.
        Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases?.
        Clin Chem. 2004; 50: 2136-2140
        • Schlitt A.
        • Heine G.H.
        • Blankenberg S.
        • et al.
        CD14+ CD16+ monocytes in coronary artery disease and their relationship to serum TNF-alpha levels.
        Thromb Haemostasis. 2004; 92: 419-424
        • Kawasaki T.
        Acute febrile muco-cutaneous lymph node syndrome in young children with unique digital desquamation.
        Jpn J Allergol. 1967; 16: 178-222
        • Kawasaki T.
        • Kosaki F.
        • Okawa S.
        • Shigematsu I.
        • Yanagawa H.
        New infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan.
        Pediatrics. 1974; 54: 271-276
        • Kato H.
        • Ichinose E.
        • Yoshioka F.
        • et al.
        Fate of coronary aneurysms in Kawasaki disease: serial coronary angiography and long-term and follow-up study.
        Am J Cardiol. 1982; 49: 1758-1766
        • Hansaker D.M.
        • Hunsaker 3rd, J.C.
        • Adams K.C.
        • Noonan J.A.
        • Ackermann D.M.
        Fatal Kawasaki disease due to coronary aneurysm rupture with massive cardiac tamponade.
        J Ky Med Assoc. 2003; 101: 233-238
        • Furusho K.
        • Kamiya T.
        • Nakano H.
        • et al.
        High-dose intravenous gammaglobulin for Kawasaki disease.
        Lancet. 1984; 2: 1055-1058
        • Newburger J.W.
        • Takahashi M.
        • Beiser A.S.
        • et al.
        A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome.
        N Engl J Med. 1991; 324: 1633-1639
        • Murata H.
        • Iijima H.
        • Naoe S.
        • Atobe T.
        • Uchiyama S.
        • Arakawa
        The pathogenesis of experimental arteritis induced by Candida alkali-extract in mice.
        Jpn J Exp Med. 1987; 57: 305-313
        • Murata H.
        • Naoe S.
        Experimental Candida-induced arteritis in mice — relation to arteritis in Kawasaki disease.
        Prog Clin Biol Res. 1987; 250: 523
        • Oharaseki T.
        • Kameoka Y.
        • Kura F.
        • Persad A.S.
        • Suzuki K.
        • Naoe S.
        Susceptibility loci to coronary arteritis in animal model of Kawasaki disease induced with Candida albicans-derived substances.
        Microbiol Immunol. 2005; 49: 181-189
        • Ishida-Okawara A.
        • Oharaseki T.
        • Takahashi K.
        • et al.
        Contribution of myeloperoxidase to coronary artery vasculitis associated with MPO-ANCA production.
        Inflammation. 2001; 25: 381-387
        • Takahashi K.
        • Oharaseki T.
        • Wakayama M.
        • Yokouchi Y.
        • Naoe S.
        • Murata H.
        Histopathological features of murine systemic vasculitis caused by Candida albicans extract — an animal model of Kawasaki disease.
        Inflamm Res. 2004; 53: 72-77
        • Uchiyama M.
        • Ohno N.
        • Miura N.N.
        • et al.
        Chemical and immunochemical characterization of limulus factor G-activating substance of Candida spp..
        FEMS Immunol Med Microbiol. 1999; 24: 411-420
        • Kurihara K.
        • Miura N.N.
        • Uchiyama M.
        • et al.
        Measurement of blood clearance time by Limulus G test of Candida-water soluble polysaccharide fraction, CAWS, in mice.
        FEMS Immunol Med Microbiol. 2000; 29: 69-76
        • Kurihara K.
        • Shingo Y.
        • Miura N.N.
        • et al.
        Effect of CAWS, a mannoprotein–beta-glucan complex of Candida albicans, on leukocyte, endothelial cell, and platelet functions in vitro.
        Biol Pharm Bull. 2003; 26: 233-240
        • Ohno N.
        Murine model of Kawasaki disease induced by mannoprotein–beta-glucan complex, CAWS, obtained from Candida albicans.
        Jpn J Infect Dis. 2004; 57: S9-S10
        • Ohno N.
        Chemistry and biology of angiitis inducer, Candida albicans water-soluble mannoprotein–beta-glucan complex (CAWS).
        Microbiol Immunol. 2003; 47: 479-490
        • Nagi-Miura N.
        • Shingo Y.
        • Adachi Y.
        • et al.
        Induction of coronary arteritis with administration of CAWS (Candida albicans water-soluble fraction) depending on mouse strains.
        Immunopharmacol Immunotoxicol. 2004; 26: 527-543
        • Suzuki K.
        • Ota H.
        • Sasagawa S.
        • Sakatani T.
        • Fujikura T.
        Assay method for myeloperoxidase in human polymorphonuclear leukocytes.
        Anal Biochem. 1983; 132: 345-352
        • Harada T.
        • Miura N.N.
        • Adachi Y.
        • Nakajima M.
        • Yadomae T.
        • Ohno N.
        IFN-gamma induction by SCG, 1,3-beta-d-glucan from Sparassis crispa, in DBA/2 mice in vitro.
        J Interferon Cytokine Res. 2002; 22: 1227-1239
        • Harada T.
        • Miura N.N.
        • Adachi Y.
        • Nakajima M.
        • Yadomae T.
        • Ohno N.
        Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates cytokine induction by 1,3-beta-d-glucan SCG in DBA/2 mice in vitro.
        J Interferon Cytokine Res. 2004; 24: 478-489
        • Hamilton J.A.
        GM-CSF in inflammation and autoimmunity.
        Trends Immunol. 2002; 23: 403-408
        • Alderuccio F.
        • Biondo M.
        • Toh B.H.
        Organ-specific autoimmunity in granulocyte macrophage-colony stimulating factor (GM-CSF) deficient mice.
        Autoimmunity. 2002; 35: 67-73
        • Seymour J.F.
        • Presneill J.J.
        Pulmonary alveolar proteinosis. What is the role of GM-CSF in disease pathogenesis and treatment?.
        Treat Resp Med. 2004; 3: 229-234
        • Frossard J.L.
        • Saluja A.K.
        • Mach N.
        • et al.
        In vivo evidence for the role of GM-CSF as a mediator in acute pancreatitis-associated lung injury.
        Am J Physiol Lung Cell Mol Physiol. 2002; 283: L541-L548
        • Cook A.D.
        • Braine E.L.
        • Campbell I.K.
        • Rich M.J.
        • Hamilton J.A.
        Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease.
        Arthritis Res. 2001; 3: 293-298
        • Campbell I.K.
        • Rich M.J.
        • Bischof R.J.
        • Dunn A.R.
        • Grail D.
        • Hamilton J.A.
        Protection from collagen-induced arthritis in granulocyte-macrophage colony-stimulating factor-deficient mice.
        J Immunol. 1998; 161: 3639-3644
        • Campbell I.K.
        • Bendele A.
        • Smith D.A.
        • Hamilton J.A.
        Granulocyte-macrophage colony stimulating factor exacerbates collagen induced arthritis in mice.
        Ann Rheum Dis. 1997; 56: 364-368
        • Biwa T.
        • Sakai M.
        • Shichiri M.
        • Horiuchi S.
        Granulocyte/macrophage colony-stimulating factor plays an essential role in oxidized low density lipoprotein-induced macrophage proliferation.
        J Atheroscler Thromb. 2000; 7: 14-20
        • Faderl S.
        • Harris D.
        • Van Q.
        • Kantarjian H.M.
        • Talpaz M.
        • Estrov Z.
        Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces antiapoptotic and proapoptotic signals in acute myeloid leukemia.
        Blood. 2003; 102: 630-637
        • Lopez A.F.
        • Williamson D.J.
        • Gamble J.R.
        • et al.
        Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival.
        J Clin Invest. 1986; 78: 1220-1228
        • Klebanoff S.J.
        Myeloperoxidase: friend and foe.
        J Leukocyte Biol. 2005; 77: 598-625
        • Sugiyama S.
        • Okada Y.
        • Sukhova G.K.
        • Virmani R.
        • Heinecke J.W.
        • Libby P.
        Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes.
        Am J Pathol. 2001; 158: 879-891
        • Metcalf D.
        • Nicola N.A.
        • Mifsud S.
        • Di Rago L.
        Receptor clearance obscures the magnitude of granulocyte-macrophage colony-stimulating factor responses in mice to endotoxin or local infections.
        Blood. 1999; 93: 1579-1585
        • Farrar M.A.
        • Schreiber R.D.
        The molecular cell biology of interferon γ and its receptor.
        Annu Rev Immunol. 1993; 11: 571-611
        • Frucht D.M.
        • Fukao T.
        • Bogdan C.
        • Schindler H.
        • O'Shea J.J.
        • Koyasu S.
        IFN-gamma production by antigen-presenting cells: mechanisms emerge.
        Trends Immunol. 2001; 22: 556-560
        • Hashimoto S.I.
        • Komuro I.
        • Yamada M.
        • Akagawa K.S.
        IL-10 inhibits granulocyte-macrophage colony-stimulating factor-dependent human monocyte survival at the early stage of the culture and inhibits the generation of macrophages.
        J Immunol. 2001; 167: 3619-3625
        • Mochida-Nishimura K.
        • Akagawa K.S.
        • Rich E.A.
        Interleukin-10 contributes development of macrophage suppressor activities by macrophage colony-stimulating factor, but not by granulocyte-macrophage colony-stimulating factor.
        Cell Immunol. 2001; 214: 81-88
        • Miyashita H.
        • Katayama N.
        • Fujieda A.
        • et al.
        IL-4 and IL-10 synergistically inhibit survival of human blood monocytes supported by GM-CSF.
        Int J Oncol. 2005; 26: 731-735
        • Willment J.A.
        • Lin H.H.
        • Reid D.M.
        • et al.
        Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide.
        J Immunol. 2003; 171: 4569-4573
        • Thomassen M.J.
        • Raychaudhuri B.
        • Bonfield T.L.
        • et al.
        Elevated IL-10 inhibits GM-CSF synthesis in pulmonary alveolar proteinosis.
        Autoimmunity. 2003; 36: 285-290
        • Taneja V.
        • David C.S.
        Association of MHC and rheumatoid arthritis. Regulatory role of HLA class II molecules in animal models of RA: studies on transgenic/knockout mice.
        Arthritis Res. 2000; 2: 205-207
        • Myers L.K.
        • Rosloniec E.F.
        • Cremer M.A.
        • Kang A.H.
        Collagen-induced arthritis, an animal model of autoimmunity.
        Life Sci. 1997; 61: 1861-1878
        • Suzuki M.
        • Carlson K.M.
        • Marchuk D.A.
        • Rockman H.A.
        Genetic modifier loci affecting survival and cardiac function in murine dilated cardiomyopathy.
        Circulation. 2002; 105: 1824-1829
        • Matsumori A.
        Lessons from animal experiments in myocarditis.
        Herz. 1992; 17: 107-111
        • Kitaura-Inenaga K.
        • Hara M.
        • Higuchi K.
        • et al.
        Gene expression of cardiac mast cell chymase and tryptase in a murine model of heart failure caused by viral myocarditis.
        Circ J. 2003; 67: 881-884
        • Matsumori A.
        • Kawai C.
        • Sawada S.
        Encephalomyocarditis virus myocarditis in inbred strains of mice — chronic stage.
        Jpn Circ J. 1982; 46: 1192-1196