Advertisement

Chlamydia pneumoniae in an ex vivo human artery culture model

      Abstract

      The role of the obligate intracellular pathogen Chlamydia pneumoniae in the development of atherosclerosis could not be completely clarified. Reasons are the highly discrepant results obtained in the hitherto existing studies and the lack of an experimental system allowing the direct examination of chlamydial effects in the human vasculature.
      We established a human ex vivo organ culture model for the characterization of vascular chlamydial infection. Ninety sections of renal arteries, obtained from nephrectomies, were inoculated with Chlamydia pneumoniae. Using a monoclonal FITC-conjugated antibody, chlamydial LPS was broadly detected in inoculated arteries during the entire observation period of 35 days. However, recultivation of viable organisms from the artery vessel wall was impossible, indicating that productive infection in human arteries did not occur even under optimized conditions. This was substantiated by low recovery rates of Chlamydia pneumoniae, low amounts of detectable chlamydial 16S rRNA and ultramorphological presence of polymorph multilamellar bodies in experimentally infected smooth muscle cells originating from aortas, coronary and renal arteries.
      We could demonstrate that the complex environment of a human artery did not support the growth of Chlamydia pneumoniae although the presence of chlamydial LPS in the artery vessel wall following experimental infection was a common event. The presence of chlamydial LPS in the absence of viable organisms within the artery vessel wall may explain the failure of antibiotic treatment strategies for atherosclerosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kuo C.C.
        • Jackson L.A.
        • Campbell L.A.
        • Grayston J.T.
        Chlamydia pneumoniae (TWAR).
        Clin Microbiol Rev. 1995; 8: 451-461
        • Saikku P.
        • Leinonen M.
        • Mattila K.
        • et al.
        Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction.
        Lancet. 1988; 2: 983-986
        • Cannon C.P.
        • Braunwald E.
        • McCabe C.H.
        • et al.
        Antibiotic treatment of Chlamydia pneumoniae after acute coronary syndrome.
        N Engl J Med. 2005; 352: 1646-1654
        • Grayston J.T.
        • Kronmal R.A.
        • Jackson L.A.
        • et al.
        Azithromycin for the secondary prevention of coronary events.
        N Engl J Med. 2005; 352: 1637-1645
        • Hoymans V.Y.
        • Bosmans J.M.
        • Van Renterghem L.
        • et al.
        Importance of methodology in determination of Chlamydia pneumoniae seropositivity in healthy subjects and in patients with coronary atherosclerosis.
        J Clin Microbiol. 2003; 41: 4049-4053
        • Ieven M.M.
        • Hoymans V.Y.
        Involvement of Chlamydia pneumoniae in atherosclerosis: more evidence for lack of evidence.
        J Clin Microbiol. 2005; 43: 19-24
        • Weiss S.M.
        • Roblin P.M.
        • Gaydos C.A.
        • et al.
        Failure to detect Chlamydia pneumoniae in coronary atheromas of patients undergoing atherectomy.
        J Infect Dis. 1996; 173: 957-962
        • Ramirez J.A.
        Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae/atherosclerosis study group.
        Ann Inter Med. 1996; 125: 979-982
        • Boman J.
        • Hammerschlag M.R.
        Chlamydia pneumoniae and atherosclerosis: critical assessment of diagnostic methods and relevance to treatment studies.
        Clin Microbiol Rev. 2002; 15: 1-20
        • Gaydos C.A.
        Growth in vascular cells and cytokine production by Chlamydia pneumoniae.
        J Infect Dis. 2000; 181: S473-S478
        • Heinemann M.
        • Susa M.
        • Simnacher U.
        • Marre R.
        • Essig A.
        Growth of Chlamydia pneumoniae induces cytokine production and expression of CD14 in a human monocytic cell line.
        Infect Immun. 1996; 64: 4872-4875
        • Voisard R.
        • von Eicken J.
        • Baur R.
        • et al.
        A human arterial organ culture model of postangioplasty restenosis: results up to 56 days after ballooning.
        Atherosclerosis. 1999; 144: 123-134
        • Reinhardt B.
        • Vaida B.
        • Voisard R.
        • et al.
        Human cytomegalovirus infection in human renal arteries in vitro.
        J Virol Meth. 2003; 109: 1-9
        • Ziegler-Heitbrock H.W.
        • Thiel E.
        • Futterer A.
        • Herzog V.
        • Wirtz A.
        • Riethmuller G.
        Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes.
        Int J Cancer. 1988; 41: 456-461
        • Dartsch P.C.
        • Voisard R.
        • Bauriedel G.
        • Hofling B.
        • Betz E.
        Growth characteristics and cytoskeletal organization of cultured smooth muscle cells from human primary stenosing and restenosing lesions.
        Arteriosclerosis. 1990; 10: 62-75
        • Poppert S.
        • Essig A.
        • Marre R.
        • Wagner M.
        • Horn M.
        Detection and differentiation of chlamydiae by fluorescence in situ hybridization.
        Appl Environ Microbiol. 2002; 68: 4081-4089
        • Fu Y.
        • Baumann M.
        • Kosma P.
        • Brade L.
        • Brade H.
        A synthetic glycoconjugate representing the genus-specific epitope of chlamydial lipopolysaccharide exhibits the same specificity as its natural counterpart.
        Infect Immun. 1992; 60: 1314-1321
        • Maass M.
        • Essig A.
        • Marre R.
        • Henkel W.
        Growth in serum-free medium improves isolation of Chlamydia pneumoniae.
        J Clin Microbiol. 1993; 31: 3050-3052
        • Gurfinkel E.
        • Bozovich G.
        • Daroca A.
        • Beck E.
        • Mautner B.
        Randomised trial of roxithromycin in non-Q-wave coronary syndromes: ROXIS pilot study. ROXIS study group.
        Lancet. 1997; 350: 404-407
        • Gupta S.
        • Leatham E.W.
        • Carrington D.
        • Mendall M.A.
        • Kaski J.C.
        • Camm A.J.
        Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction.
        Circulation. 1997; 96: 404-407
        • O’Connor C.M.
        • Dunne M.W.
        • Pfeffer M.A.
        • et al.
        Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial.
        JAMA. 2003; 290: 1459-1466
        • Smieja M.
        • Mahony J.B.
        • Petrich A.
        • Boman J.
        • Chernesky M.
        Association of circulating Chlamydia pneumoniae DNA with cardiovascular disease: a systematic review.
        BMC Infect Dis. 2002; 2: 21
        • Dechend R.
        • Maass M.
        • Gieffers J.
        • et al.
        Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF-kappaB and induces tissue factor and PAI-1 expression: a potential link to accelerated arteriosclerosis.
        Circulation. 1999; 100: 1369-1373
        • Gaydos C.A.
        • Summersgill J.T.
        • Sahney N.N.
        • Ramirez J.A.
        • Quinn T.C.
        Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells.
        Infect Immun. 1996; 64: 1614-1620
        • Maass M.
        • Gieffers J.
        • Solbach W.
        Atherogenetically relevant cells support continuous growth of Chlamydia pneumoniae.
        Herz. 2000; 25: 68-72
        • Coombes B.K.
        • Mahony J.B.
        Chlamydia pneumoniae infection of human endothelial cells induces proliferation of smooth muscle cells via an endothelial cell-derived soluble factor(s).
        Infect Immun. 1999; 67: 2909-2915
        • Rodel J.
        • Prochnau D.
        • Prager K.
        • Pentcheva E.
        • Hartmann M.
        • Straube E.
        Increased production of matrix metalloproteinases 1 and 3 by smooth muscle cells upon infection with Chlamydia pneumoniae.
        FEMS Immunol Med Microbiol. 2003; 38: 159-164
        • Hariri M.
        • Millane G.
        • Guimond M.P.
        • Guay G.
        • Dennis J.W.
        • Nabi I.R.
        Biogenesis of multilamellar bodies via autophagy.
        Mol Biol Cell. 2000; 11: 255-268
        • Dumrese C.
        • Maurus C.F.
        • Gygi D.
        • et al.
        Chlamydia pneumoniae induces aponecrosis in human aortic smooth muscle cells.
        BMC Microbiol. 2005; 5: 2
        • Kalayoglu M.V.
        • Byrne G.I.
        A Chlamydia pneumoniae component that induces macrophage foam cell formation is chlamydial lipopolysaccharide.
        Infect Immun. 1998; 66: 5067-5072
        • Meijer A.
        • Der Vliet J.A.
        • Roholl P.J.
        • Gielis-Proper S.K.
        • de Vries A.
        • Ossewaarde J.M.
        Chlamydia pneumoniae in abdominal aortic aneurysms: abundance of membrane components in the absence of heat shock protein 60 and DNA.
        Arterioscler Thromb Vasc Biol. 1999; 19: 2680-2686
        • Meijer A.
        • Roholl P.J.
        • Gielis-Proper S.K.
        • Ossewaarde J.M.
        Chlamydia pneumoniae antigens, rather than viable bacteria, persist in atherosclerotic lesions.
        J Clin Pathol. 2000; 53: 911-916
        • Muhlestein J.B.
        • Anderson J.L.
        • Hammond E.H.
        • et al.
        Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model.
        Circulation. 1998; 97: 633-636
        • Hoymans V.Y.
        • Bosmans J.M.
        • Ursi D.
        • et al.
        Immunohistostaining assays for detection of Chlamydia pneumoniae in atherosclerotic arteries indicate cross-reactions with nonchlamydial plaque constituents.
        J Clin Microbiol. 2004; 42: 3219-3224
        • Dowell S.F.
        • Peeling R.W.
        • Boman J.
        • et al.
        Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada).
        Clin Infect Dis. 2001; 33: 492-503
        • Maass M.
        • Bartels C.
        • Engel P.M.
        • Mamat U.
        • Sievers H.H.
        Endovascular presence of viable Chlamydia pneumoniae is a common phenomenon in coronary artery disease.
        J Am Coll Cardiol. 1998; 31: 827-832
        • Apfalter P.
        • Loidl M.
        • Nadrchal R.
        • et al.
        Isolation and continuous growth of Chlamydia pneumoniae from arterectomy specimens.
        Eur J Clin Microbiol Infect Dis. 2000; 19: 305-308