Advertisement

Critical role of bradykinin-eNOS and oxidative stress-LOX-1 pathway in cardiovascular remodeling under chronic angiotensin-converting enzyme inhibition

      Abstract

      To elucidate the molecular mechanisms of the cardioprotective effect of angiotensin-converting enzyme (ACE) inhibitors, we evaluated whether the effect of quinapril involved in bradykinin-endothelial nitric oxide synthase (eNOS) and oxidative stress-lectin-like oxidized LDL receptor-1 (LOX-1) pathway. Dahl salt-sensitive hypertensive (DS) rats were fed a diet containing 8% NaCl and treated with one of the following drug combinations for 5 weeks, from 6 weeks of age to left ventricular hypertrophy stage (11 weeks): vehicle; quinapril; quinapril plus the bradykinin B2 receptor antagonist FR172357; the NAD(P)H oxidase inhibitor apocynin; or quinapril plus apocynin. eNOS expression, which was decreased in hypertrophy stage, was significantly increased by quinapril and/or apocynin, but not by quinapril plus FR172357. Upregulated expression of NAD(P)H oxidase p22phox, p47phox, gp91phox and LOX-1 was significantly decreased by quinapril to a similar degree as after treatment with apocynin, but not by quinapril plus FR172357. Quinapril and/or apocynin treatment effectively ameliorated left ventricular weight and vascular changes such as increase in medial thickness and perivascular fibrosis and suppressed expression of transforming growth factor-β1, type I collagen and fibronectin mRNA, but not that of quinapril plus FR172357. These results suggest that the ACE inhibitor quinapril may have cardioprotective effects in this model of hypertension mediated at least in part through effects on the bradykinin-eNOS and oxidative stress-LOX-1 pathway.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators
        Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure.
        Lancet. 1993; 342: 821-828
        • The SOLVD Investigators
        Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure.
        N Engl J Med. 1991; 325: 293-302
        • Blais Jr., C.
        • Marceau F.
        • Rouleau J.L.
        • Adam A.
        The kallikrein-kininogen-kinin system: lessons from the quantification of endogenous kinins.
        Peptides. 2000; 21: 1903-1940
        • Yang X.P.
        • Liu Y.H.
        • Mehta D.
        • et al.
        Diminished cardioprotective response to inhibition of angiotensin-converting enzyme and angiotensin II type 1 receptor in B(2) kinin receptor gene knockout mice.
        Circ Res. 2001; 88: 1072-1079
        • McIntyre T.M.
        • Zimmerman G.A.
        • Satoh K.
        • Prescott S.M.
        Cultured endothelial cells synthesize both platelet-activating factor and prostacyclin in response to histamine, bradykinin, and adenosine triphosphate.
        J Clin Invest. 1985; 76: 271-280
        • Pimentel D.R.
        • Amin J.K.
        • Xiao L.
        • et al.
        Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes.
        Circ Res. 2001; 89: 453-460
        • Nakamura K.
        • Fushimi K.
        • Kouchi H.
        • et al.
        Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II.
        Circulation. 1998; 98: 794-799
        • Zalba G.
        • Beaumont F.J.
        • San Jose G.
        • et al.
        Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats.
        Hypertension. 2000; 35: 1055-1061
        • Kobayashi N.
        • Mita S.
        • Yoshida K.
        • et al.
        Celiprolol activates eNOS through the PI3K-Akt pathway and inhibits VCAM-1 via NF-κB induced by oxidative stress.
        Hypertension. 2003; 42: 1004-1013
        • Kobayashi N.
        • Yoshida K.
        • Mita S.
        • et al.
        Betaxolol stimulates eNOS production associated with LOX-1 and VEGF in Dahl salt-sensitive rats.
        J Hypertens. 2004; 22: 1397-1402
        • Mita S.
        • Kobayashi N.
        • Yoshida K.
        • Nakano S.
        • Matsuoka H.
        Cardioprotective mechanisms of Rho-kinase inhibition associated with eNOS and oxidative stress-LOX-1 pathway in Dahl salt-sensitive hypertensive rats.
        J Hypertens. 2005; 23: 87-96
        • Tojo A.
        • Onozato M.L.
        • Kobayashi N.
        • Goto A.
        • Matsuoka H.
        • Fujita T.
        Antioxidative effect of p38 mitogen-activated protein kinase inhibitor in the kidney of hypertensive rat.
        J Hypertens. 2005; 23: 165-174
        • Mehta J.L.
        • Li D.Y.
        • Chen H.J.
        • Joseph J.
        • Romeo F.
        Inhibition of LOX-1 by statins may relate to upregulation of eNOS.
        Biochem Biophys Res Commun. 2001; 289: 857-861
        • Kobayashi N.
        • Nishikimi T.
        • Horinaka S.
        • Ishimitsu T.
        • Matsuoka H.
        Effects of TCV-116 on expression of NOS and adrenomedullin in failing heart of Dahl salt-sensitive rats.
        Atherosclerosis. 2001; 156: 255-265
        • Kobayashi N.
        • Horinaka S.
        • Mita S.
        • et al.
        Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts.
        Cardiovasc Res. 2002; 55: 757-767
        • Bandeira-Melo C.
        • Calheiros A.S.
        • Silva P.M.
        • Cordeiro R.S.
        • Teixeira M.M.
        • Martins M.A.
        Suppressive effect of distinct bradykinin B2 receptor antagonist on allergen-evoked exudation and leukocyte infiltration in sensitized rats.
        Br J Pharmacol. 1999; 127: 315-320
        • Kobayashi N.
        • Hara K.
        • Tojo A.
        • et al.
        Eplerenone shows renoprotective effect by reducing LOX-1-mediated adhesion molecule, PKCepsilon-MAPK-p90RSK, and Rho-kinase pathway.
        Hypertension. 2005; 45: 538-544
        • Kobayashi N.
        • Nakano S.
        • Mita S.
        • et al.
        Involvement of Rho-kinase pathway for angiotensin II-induced plasminogen activator inhibitor-1 gene expression and cardiovascular remodeling in hypertensive rats.
        J Pharmacol Exp Ther. 2002; 301: 459-466
        • Hara K.
        • Kobayashi N.
        • Watanabe S.
        • Tsubokou Y.
        • Matsuoka H.
        Effects of quinapril on expression of eNOS, ACE, and AT1 receptor in deoxycorticosterone acetate-salt hypertensive rats.
        Am J Hypertens. 2001; 14: 321-330
        • Kramer H.J.
        • Glanzer K.
        • Meyer-Lehnert H.
        • Mohaupt M.
        • Predel H.G.
        Kinin- and non-kinin-mediated interactions of converting enzyme inhibitors with vasoactive hormones.
        J Cardiovasc Pharmacol. 1990; 15: S91-S98
        • Derian C.K.
        • Moskowitz M.A.
        Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments. Bradykinin-2 receptor stimulation is calcium-independent.
        J Biol Chem. 1986; 261: 3831-3837
        • Groves P.
        • Kurz S.
        • Just H.
        • Drexler H.
        Role of endogenous bradykinin in human coronary vasomotor control.
        Circulation. 1995; 92: 3424-3430
        • Fujii M.
        • Wada A.
        • Tsutamoto T.
        • Ohnishi M.
        • Isono T.
        • Kinoshita M.
        Bradykinin improves left ventricular diastolic function under long-term angiotensin-converting enzyme inhibition in heart failure.
        Hypertension. 2002; 39: 952-957
        • Chen R.
        • Iwai M.
        • Wu L.
        • et al.
        Important role of nitric oxide in the effect of angiotensin-converting enzyme inhibitor imidapril on vascular injury.
        Hypertension. 2003; 42: 542-547
        • Griendling K.K.
        • Minieri C.A.
        • Ollerenshaw J.D.
        • Alexander R.W.
        Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.
        Circ Res. 1994; 74: 1141-1148
        • Rajagopalan S.
        • Kurz S.
        • Munzel T.
        • et al.
        Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone.
        J Clin Invest. 1996; 97: 1916-1923
        • Hornig B.
        • Landmesser U.
        • Kohler C.
        • et al.
        Comparative effect of ace inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase.
        Circulation. 2001; 103: 799-805
        • Gerdes A.M.
        • Liu Z.
        • Zimmer H.G.
        Changes in nuclear size of cardiac myocytes during the development and progression of hypertrophy in rats.
        Cardioscience. 1994; 5: 203-208
        • MacLellan W.R.
        • Schneider M.D.
        Death by design. Programmed cell death in cardiovascular biology and disease.
        Circ Res. 1997; 81: 137-144
        • Weber K.T.
        • Anversa P.
        • Armstrong P.W.
        • et al.
        Remodeling and reparation of the cardiovascular system.
        J Am Coll Cardiol. 1992; 20: 3-16
        • Griendling K.K.
        • Sorescu D.
        • Ushio-Fukai M.
        NAD(P)H oxidase: role in cardiovascular biology and disease.
        Circ Res. 2000; 86: 494-501
        • Bendall J.K.
        • Cave A.C.
        • Heymes C.
        • Gall N.
        • Shah A.M.
        Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice.
        Circulation. 2002; 105: 293-296
        • Tojo A.
        • Onozato M.L.
        • Kobayashi N.
        • Goto A.
        • Matsuoka H.
        • Fujita T.
        Angiotensin II and oxidative stress in Dahl salt-sensitive rat with heart failure.
        Hypertension. 2002; 40: 834-839
        • Delbosc S.
        • Paizanis E.
        • Magous R.
        • et al.
        Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat.
        Atherosclerosis. 2005; 179: 43-49
        • Kugiyama K.
        • Kerns S.A.
        • Merriest J.D.
        • Roberts R.
        • Henry P.D.
        Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins.
        Nature. 1990; 344: 160-162
        • Kume N.
        • Cybulsky M.I.
        • Gimbrone Jr., MA.
        Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells.
        J Clin Invest. 1992; 90: 1138-1144
        • Nagase M.
        • Hirose S.
        • Sawamura T.
        • Masaki T.
        • Fujita T.
        Enhanced expression of endothelial oxidized low-density lipoprotein receptor (LOX-1) in hypertensive rats.
        Biochem Biophys Res Commun. 1997; 237: 496-498
        • Greene E.L.
        • Velarde V.
        • Jaffa A.A.
        Role of reactive oxygen species in bradykinin-induced mitogen-activated protein kinase and c-fos induction in vascular cells.
        Hypertension. 2000; 35: 942-947
        • Kinugawa S.
        • Post H.
        • Kaminski P.M.
        • et al.
        Coronary microvascular endothelial stunning after acute pressure overload in the conscious dog is caused by oxidant processes: the role of angiotensin II type 1 receptor and NAD(P)H oxidase.
        Circulation. 2003; 108: 2934-2940
        • Xia C.F.
        • Yin H.
        • Borlongan C.V.
        • Chao L.
        • Chao J.
        Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis.
        Hypertension. 2004; 43: 452-459