Advertisement

Pitavastatin-induced downregulation of CCR2 and CCR5 in monocytes is associated with the arrest of cell-cycle in S phase

      Abstract

      The pleiotropic effects of statin, including its anti-inflammatory effects, via chemokines may be independent of statin-induced cholesterol reduction. Therefore, we examined the effect of pitavastatin on cell proliferation and the association between chemokine receptors (CCR2 and CCR5) and their ligands, RANTES (regulated upon activation, normal T cell-expressed and secreted) and monocyte chemotactic protein-1 (MCP-1), in monocytes. Pitavastatin but not pravastatin inhibited cell proliferation in a dose-dependent manner and showed S-phase arrest associated with the downregulation of CCR2 and CCR5 expression in human monocytic tumor cells (U937 cells). Although the anti-proliferative effects of pitavastatin were not inhibited by lower concentrations of RANTES and MCP-1, overexpression of CCR2/CCR5 significantly blocked the anti-proliferation with a low concentration of RANTES or MCP-1. Pitavastatin upregulated p21waf1 but not p27kip1, and did not change the expression levels of cyclin D1 or cdk4. In addition, RANTES and MCP-1 upregulated cyclin D1 in the presence of pitavastatin. In conclusion, the anti-proliferative effect of pitavastatin, but not pravastatin, through the downregulation of CCR2/CCR5 may be a pleiotropic effect. This effect may be anti-atherogenic in monocytes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moser B.
        • Loetscher M.
        • Piali L.
        • Loetscher P.
        Lymphocyte responses to chemokines.
        Int Rev Immunol. 1998; 16: 323-344
        • Zlotnik A.
        • Yoshie O.
        Chemokines: a new classification system and their role in immunity.
        Immunity. 2000; 12: 121-127
        • Sacks F.M.
        • Pfeffer M.A.
        • Moye L.A.
        • et al.
        The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and recurrent events trial investigators.
        N Engl J Med. 1996; 335: 1001-1009
        • Shepherd J.
        • Cobbe S.M.
        • Ford I.
        • et al.
        • West of Scotland Coronary Prevention Study Group
        Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia.
        N Engl J Med. 1995; 333: 1301-1307
        • Kureishi Y.
        • Luo Z.
        • Shiojima I.
        • et al.
        The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals.
        Nat Med. 2000; 6: 1004-1010
        • Axel D.I.
        • Riessen R.
        • Runge H.
        • Viebahn R.
        • Karsch K.R.
        Effects of cerivastatin on human arterial smooth muscle cell proliferation and migration in transfilter cocultures.
        J Cardiovasc Pharmacol. 2000; 35: 619-629
        • Waehre T.
        • Damas J.K.
        • Gullestad L.
        • et al.
        Hydroxymethylglutaryl coenzyme A reductase inhibitors down-regulate chemokines and chemokine receptors in patients with coronary artery disease.
        J Am Coll Cardiol. 2003; 41: 1460-1467
        • Hiraoka M.
        • Nitta N.
        • Nagai M.
        • Shimokado K.
        • Yoshida M.
        MCP-1-induced enhancement of THP-1 adhesion to vascular endothelium was modulated by HMG-CoA reductase inhibitor through RhoA GTPase, but not ERK1/2-dependent pathway.
        Life Sci. 2004; 75: 1333-1341
        • Dechend R.
        • Gieffers J.
        • Dietz R.
        • et al.
        Hydroxymethylglutaryl coenzyme A reductase inhibition reduces Chlamydia pneumoniae-induced cell interaction and activation.
        Circulation. 2003; 108: 261-265
        • Diomede L.
        • Albani D.
        • Sottocorno M.
        • et al.
        In vivo anti-inflammatory effect of statins is mediated by nonsterol mevalonate products.
        Arterioscler Thromb Vasc Biol. 2001; 21: 1327-1332
        • Yoshida M.
        • Sawada T.
        • Ishii H.
        • et al.
        Hmg-CoA reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro: involvement of Rho GTPase-dependent mechanism.
        Arterioscler Thromb Vasc Biol. 2001; 21: 1165-1171
        • Bakhiet M.
        • Tjernlund A.
        • Mousa A.
        • et al.
        RANTES promotes growth and survival of human first-trimester forebrain astrocytes.
        Nat Cell Biol. 2001; 3: 150-157
        • Selzman C.H.
        • Miller S.A.
        • Zimmerman M.A.
        • et al.
        Monocyte chemotactic protein-1 directly induces human vascular smooth muscle proliferation.
        Am J Physiol. 2002; 283: H1455-H1461
        • Ross R.
        The pathogenesis of atherosclerosis—an update.
        N Engl J Med. 1986; 314: 488-500
        • Mellado M.
        • Rodriguez-Frade J.M.
        • Vila-Coro A.J.
        • et al.
        Chemokine receptor homo- or heterodimerization activates distinct signaling pathways.
        EMBO J. 2001; 20: 2497-2507
        • Miura S.
        • Karnik S.S.
        Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis.
        EMBO J. 2000; 19: 4026-4035
        • Moghadasian M.H.
        Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors.
        Life Sci. 1999; 65: 1329-1337
        • Parissis J.T.
        • Korovesis S.
        • Giazitzoglou E.
        • Kalivas P.
        • Katritsis D.
        Plasma profiles of peripheral monocyte-related inflammatory markers in patients with arterial hypertension. Correlations with plasma endothelin-1.
        Int J Cardiol. 2002; 83: 13-21
        • Aukrust P.
        • Ueland T.
        • Muller F.
        • et al.
        Elevated circulating levels of C C chemokines in patients with congestive heart failure.
        Circulation. 1998; 97: 1136-1143
        • Corsi M.M.
        • Leone G.
        • Fulgenzi A.
        • et al.
        RANTES and MCP-1 chemokine plasma levels in chronic renal transplant dysfunction and chronic renal failure.
        Clin Biochem. 1999; 32: 455-460
        • Poetter K.
        • Jiang H.
        • Hassanzadeh S.
        • et al.
        Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle.
        Nat Genet. 1996; 13: 63-69
        • Ikeda U.
        • Okada K.
        • Ishikawa S.
        • et al.
        Monocyte chemoattractant protein 1 inhibits growth of rat vascular smooth muscle cells.
        Am J Physiol. 1995; 268: H1021-H1026
        • Jonasson L.
        • Holm J.
        • Skalli O.
        • Bondjers G.
        • Hansson G.K.
        Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque.
        Arteriosclerosis. 1986; 6: 131-138
        • Joris I.
        • Zand T.
        • Nunnari J.J.
        • Krolikowski F.J.
        • Majno G.
        Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats.
        Am J Pathol. 1983; 113: 341-358
        • Ross R.
        Atherosclerosis—an inflammatory disease.
        N Engl J Med. 1999; 340: 115-126
        • MacRae F.L.
        • Sergio F.
        Macrophages, inflammation and atherosclerosis.
        Int J Obesity. 2003; 27: S35-S40
        • Lucas A.D.
        • Greaves D.R.
        Atherosclerosis: role of chemokines and macrophages.
        Expert Rev Mol Med. 2001; : 1-18
        • Takeyla N.W.
        • Cecelia X.Z.
        • Bryan A.G.
        • Lin H.
        • Yan H.
        C-reactive protein stimurlates MMP-1 expression in U937 histiocytes through FcγRII and extracellular signal-regulated kinase pathway.
        ATVB. 2004; 24: 61-66
        • Springer T.A
        Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm.
        Cell. 1994; 76: 301-314
        • Brandes R.P.
        • Beer S.
        • Ha T.
        • Busse R.
        Withdrawal of cerivastatin induces monocyte chemoattractant protein 1 and tissue factor expression in cultured vascular smooth muscle cells.
        Arterioscler Thromb Vasc Biol. 2003; 23: 1794-1800
        • Sherr C.J.
        • Roberts J.M.
        Cdk inhibitors: positive and negative regulators of G1-phase progression.
        Genes Dev. 1999; 13: 1501-1512
        • Morgan D.O.
        Principles of Cdk regulation.
        Nature. 1995; 374: 131-134
        • Ogryzko V.V.
        • Wong P.
        • Howard B.H.
        WAF1 retards S-phase progression primarily by inhibition of cyclin-dependent kinases.
        Mol Cell Biol. 1997; 17: 4877-4882
        • Gartel A.L.
        • Tyner A.L.
        Transcriptional regulation of the p21(WAF1/CIP1) gene.
        Exp Cell Res. 1999; 246: 280-289
        • Chan A.W.
        • Bhatt D.L.
        • Chew D.P.
        • et al.
        Relation of inflammation and benefit of statins after percutaneous coronary interventions.
        Circulation. 2003; 107: 1750-1756
        • Cipollone F.
        • Marini M.
        • Fazia M.
        Elevated circulating levels of monocyte chemoattractant protein-1 in patients with restenosis after coronary angioplasty.
        Arterioscler Thromb Vasc Biol. 2001; 21: 327-334
        • Horvath C.
        • Welt F.G.P.
        • Nedelman M.
        Targeting CCR2 or CD18 inhibits experimental in-stent restenosis in primates: inhibitory potential depends on type of injury and leukocytes targeted.
        Circ Res. 2002; 90: 488-494
        • Roque M.
        • Kim W.J.
        • Gazdoin M.
        • et al.
        CCR2 deficiency decreases intimal hyperplasia after arterial injury.
        Arterioscler Thromb Vasc Biol. 2002; 22: 554-559
        • Kawamura A.
        • Miura S.
        • Fujino M.
        • et al.
        CXCR3 chemokine receptor-plasma IP10 interaction in patients with coronary artery disease.
        Circ J. 2003; 67: 851-854