Advertisement

Impact of oxidized low density lipoprotein on vascular cells

      Abstract

      Oxidized LDL (OxLDL) is a proatherogenic lipoprotein, accumulating in the vascular wall and contributing to the pathogenesis of vascular dysfunction early in the development of atherosclerosis. Enhanced serum levels of OxLDL, as well as antibodies against its epitopes, are predictive for endothelial dysfunction and coronary heart disease. While enhanced oxidative stress is one factor triggering formation of OxLDL, OxLDL itself has been identified as a potent stimulus for vascular oxygen radical formation, causing a vicious circle. OxLDL-induced O2 formation, largely through activation of NADPH oxidase, but also through uncoupling of endothelial NO-synthase and through direct O2 release, leads to endothelial dysfunction. Furthermore, OxLDL-induced O2 formation has a strong impact on tissue remodeling, resulting in either cell growth – proliferation or hyperplasia – or apoptotic cell death. The effect of OxLDL on cell cycle regulation is mediated by activation of the small GTPase RhoA and consequent regulation of p27KIP1, a key enzyme of the cell cycle. In addition, OxLDL-induced activation of RhoA sensitizes the contractile apparatus of the vessel wall, enhancing the contractile tonus and favoring vasospasm. Thus, through a variety of mechanisms, OxLDL importantly contributes to vascular dysfunction and remodeling.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ross R.
        Mechanisms of disease—atherosclerosis: an inflammatory disease.
        N Engl J Med. 1999; 340: 115-126
        • Schachinger V.
        • Zeiher A.M.
        Atherogenesis-recent insights into basic mechanisms and their clinical impact.
        Nephrol Dial Transplant. 2002; 17: 2055-2064
        • Caplan B.A.
        • Schwartz C.J.
        Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta.
        Atherosclerosis. 1973; 17: 401-417
        • Sprague E.A.
        • Steinbach B.L.
        • Nerem R.M.
        • Schwartz C.J.
        Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low density lipoproteins by cultured arterial endothelium.
        Circulation. 1987; 76: 648-656
        • Kockx M.M.
        • De Meyer G.R.Y.
        • Muhring J.
        • et al.
        Apoptosis and related proteins in different stages of human atherosclerotic plaques.
        Circulation. 1998; 97: 2307-2315
        • Crisby M.
        • Kallin B.
        • Thyberg J.
        • et al.
        Cell death in human atherosclerotic plaques involves both oncosis and apoptosis.
        Atherosclerosis. 1997; 130: 17-27
        • Dzau V.J.
        • Braun-Dullaeus R.C.
        • Sedding D.G.
        Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies.
        Nat Med. 2002; 8: 1249-1256
        • Berliner J.A.
        • Heinecke J.W.
        The role of oxidized lipoproteins in atherogenesis.
        Free Radic Biol Med. 1996; 20: 707-727
        • Shackelford R.E.
        • Kaufmann W.K.
        • Paules R.S.
        Oxidative stress and cell cycle checkpoint function.
        Free Radic Biol Med. 2000; 28: 1387-1404
        • Ylä-Herttuala S.
        • Palinski W.
        • Rosenfeld M.E.
        • et al.
        Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man.
        J Clin Invest. 1989; 84: 1086-1095
        • Rath M.
        • Niendorf A.
        • Reblin T.
        • et al.
        Detection and quantification of lipoprotein(A) in the arterial wall of 107 coronary bypass patients.
        Arteriosclerosis. 1989; 9: 579-592
        • Berliner J.A.
        • Navab M.
        • Fogelman A.M.
        • et al.
        Atherosclerosis: basic mechanisms: oxidation, inflammation, and genetics.
        Circulation. 1995; 91: 2488-2496
        • Steinberg D.
        • Parthasarathy S.
        • Carew T.E.
        • Khoo J.C.
        • Witztum J.L.
        Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity.
        N Engl J Med. 1989; 320: 915-924
        • Galle J.
        • Wanner C.
        Oxidized LDL and Lp(a)—preparation, modification, and analysis.
        in: Armstrong D. Free radical and antioxidant protocols. Humana Press, Totowa, NJ1998: 119-130
        • Klouche M.
        • May A.E.
        • Hemmes M.
        • et al.
        Enzymatically modified, nonoxidized LDL induces selective adhesion and transmigration of monocytes and T-lymphocytes through human endothelial cell monolayers.
        Arterioscler Thromb Vasc Biol. 1999; 19: 784-793
        • Berliner J.A.
        • Territo M.C.
        • Sevanian A.
        • et al.
        Minimally modified low density lipoprotein stimulates monocyte endothelial interactions.
        J Clin Invest. 1990; 85: 1260-1266
        • Madamanchi N.R.
        • Vendrov A.
        • Runge M.S.
        Oxidative stress and vascular disease.
        Arterioscler Thromb Vasc Biol. 2005; 25: 29-38
        • Carr A.C.
        • McCall M.R.
        • Frei B.
        Oxidation of LDL by myeloperoxidase and reactive nitrogen species—reaction pathways and antioxidant protection.
        Arterioscler Thromb Vasc Biol. 2000; 20: 1716-1723
        • Griendling K.K.
        • Sorescu D.
        • Ushio-Fukai M.
        NAD(P)H oxidase—role in cardiovascular biology and disease.
        Circ Res. 2000; 86: 494-501
        • Vásquez-Vivar J.
        • Kalyanaraman B.
        Generation of superoxide from nitric oxide synthase.
        FEBS Lett. 2000; 481: 305-306
        • Böger R.H.
        • Böde-Boger S.M.
        • Phivthong-ngam L.
        • et al.
        Dietary l-arginine and α-tocopherol reduce vascular oxidative stress and preserve endothelial function in hypercholesterolemic rabbits via different mechanisms.
        Atherosclerosis. 1998; 141: 31-43
        • Heitzer T.
        • Brockhoff C.
        • Mayer B.
        • et al.
        Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers—evidence for a dysfunctional nitric oxide synthase.
        Circ Res. 2000; 86: E36-E41
        • Fleming I.
        • Mohamed A.
        • Galle J.
        • et al.
        Oxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKC alpha.
        Cardiovasc Res. 2005; 65: 897-906
        • Lander H.M.
        An essential role for free radicals and derived species in signal transduction.
        FASEB J. 1997; 11: 118-124
        • Griendling K.K.
        • FitzGerald G.A.
        Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS.
        Circulation. 2003; 108: 1912-1916
        • Tsimikas S.
        • Lau H.K.
        • Han K.R.
        • et al.
        Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein.
        Circulation. 2004; 109: 3164-3170
        • Ohara Y.
        • Peterson T.E.
        • Harrison D.G.
        Hypercholesterolemia increases endothelial superoxide anion production.
        J Clin Invest. 1993; 91: 2546-2551
        • Mügge A.
        • Brandes R.P.
        • Böger R.H.
        • et al.
        Vascular release of superoxide radicals is enhanced in hypercholesterolemic rabbits.
        J Cardivasc Pharmacol. 1994; 24: 994-998
        • Hansen P.R.
        • Kharazmi A.K.
        • Jauhiainen M.
        • Ehnholm C.
        Induction of free radical generation in human monocytes by lipoprotein(a).
        Eur J Clin Invest. 1994; 24: 497-499
        • Galle J.
        • Bengen J.
        • Schollmeyer P.
        • Wanner C.
        Impairment of endothelium-dependent dilation in rabbit renal arteries by oxidized lipoprotein(a)—role of oxygen-derived radicals.
        Circulation. 1995; 92: 1582-1589
        • Maeba R.
        • Maruyama A.
        • Tarutani O.
        • Ueta N.
        • Shimasaki H.
        Oxidized low-density lipoprotein induces the production of superoxide by neutrophils.
        FEBS Lett. 1995; 377: 309-312
        • Galle J.
        • Heinloth A.
        • Schwedler S.
        • Wanner C.
        Effect of HDL and atherogenic lipoproteins on formation of O2 and renin release in juxtaglomerular cells.
        Kidney Int. 1997; 51: 253-260
        • Kinscherf R.
        • Deigner H.P.
        • Usinger C.
        • et al.
        Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits.
        FASEB J. 1997; 11: 1317-1328
        • Cominacini L.
        • Garbin U.
        • Pasini A.F.
        • et al.
        Oxidized low-density lipoprotein increases the production of intracellular reactive oxygen species in endothelial cells: inhibitory effect of lacidipine.
        J. Hypertens. 1998; 16: 1913-1919
        • Galle J.
        • Schneider R.
        • Heinloth A.
        • et al.
        Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: role of oxidative stress.
        Kidney Int. 1999; 55: 1450-1461
        • Cominacini L.
        • Pasini A.F.
        • Garbin U.
        • et al.
        Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species.
        J Biol Chem. 2000; 275: 12633-12638
        • Sharma P.
        • Reddy K.
        • Franki N.
        • et al.
        Native and oxidized low density lipoproteins modulate mesangial cell apoptosis.
        Kidney Int. 1996; 50: 1604-1611
        • Parthasarathy S.
        • Steinbrecher U.
        • Barnett J.
        • Witztum J.L.
        • Steinberg D.
        Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein.
        Proc Natl Acad Sci USA. 1985; 82: 3000-3004
        • Yokoyama M.
        • Hirata K.
        • Miyake R.
        • et al.
        Lysophosphatidylcholine: essential role in the inhibition of endothelium-dependent vasorelaxation by oxidized low density lipoprotein.
        Biochem Biophys Res Commun. 1990; 168: 301-308
        • Esterbauer H.
        • Jürgens G.
        • Quehenberger O.
        • Koller E.
        Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and Vitamin E and generation of aldehydes.
        J Lipid Res. 1987; 28: 495-509
        • Kugiyama K.
        • Sugiyama S.
        • Ogata N.
        • et al.
        Burst production of superoxide anion in human endothelial cells by lysophosphatidylcholine.
        Atherosclerosis. 1999; 143: 201-204
        • Ohara Y.
        • Peterson T.E.
        • Zheng B.
        • Kuo J.F.
        • Harrison D.G.
        Lysophosphatidylcholine increases vascular superoxide anion production via protein kinase C activation.
        Arterioscler Thromb. 1994; 14: 1007-1013
        • Heinloth A.
        • Heermeier K.
        • Raff U.
        • Wanner C.
        • Galle J.
        Stimulation of NADPH oxidase by oxidized low-density lipoprotein induces proliferation of human vascular endothelial cells.
        J Am Soc Nephrol. 2000; 11: 1819-1825
        • Rueckschloss U.
        • Galle J.
        • Holtz J.
        • Zerkowski H.R.
        • Morawietz H.
        Induction of NAD(P)H oxidase by oxidized low-density lipoprotein in human endothelial cells—antioxidative potential of hydroxymethylglutaryl coenzyme a reductase inhibitor therapy.
        Circulation. 2001; 104: 1767-1772
        • Stuehr D.
        • Pou S.
        • Rosen G.M.
        Oxygen reduction by nitric-oxide synthases.
        J Biol Chem. 2001; 276: 14533-14536
        • Ohba M.
        • Shibanuma M.
        • Kuroki T.
        • Nose K.
        Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells.
        J Cell Biol. 1994; 126: 1079-1088
        • Griendling K.K.
        • Minieri C.A.
        • Ollerenshaw J.D.
        • Alexander R.W.
        Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.
        Circ Res. 1994; 74: 1141-1148
        • Sundaresan M.
        • Yu Z.X.
        • Ferrans V.J.
        • Irani K.
        • Finkel T.
        Requirement for generation of H2O2 for platelet-derived growth factor signal transduction.
        Science. 1995; 270: 296-299
        • Lo Y.Y.
        • Cruz T.F.
        Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes.
        J Biol Chem. 1995; 270: 11727-11730
        • Thannickal V.J.
        • Fanburg B.L.
        Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1.
        J Biol Chem. 1995; 270: 30334-30338
        • Cominacini L.
        • Rigoni A.
        • Pasini A.F.
        • et al.
        The binding of oxidized low density lipoprotein (ox-LDL) to ox- LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide.
        J Biol Chem. 2001; 276: 13750-13755
        • Thum T.
        • Borlak J.
        Mechanistic role of cytochrome P450 monooxygenases in oxidized low-density lipoprotein-induced vascular injury: therapy through LOX-1 receptor antagonism?.
        Circ Res. 2004; 94: e1-e13
        • Miyazaki H.
        • Matsuoka H.
        • Cooke J.P.
        • et al.
        Endogenous nitric oxide synthase inhibitor: a novel marker of atherosclerosis.
        Circulation. 1999; 99: 1141-1146
        • Zoccali C.
        • Bode-Boger S.
        • Mallamaci F.
        • et al.
        Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study.
        Lancet. 2001; 358: 2113-2117
        • Boger R.H.
        • Sydow K.
        • Borlak J.
        • et al.
        LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases.
        Circ Res. 2000; 87: 99-105
        • Scalera F.
        • Borlak J.
        • Beckmann B.
        • et al.
        Endogenous nitric oxide synthesis inhibitor asymmetric dimethyl l-arginine accelerates endothelial cell senescence.
        Arterioscler Thromb Vasc Biol. 2004; 24: 1816-1822
        • Smirnova I.V.
        • Sawamura T.
        • Goligorsky M.S.
        Upregulation of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in endothelial cells by nitric oxide deficiency.
        Am J Physiol Renal Physiol. 2004; 287: F25-F32
        • el Saadani M.
        • Esterbauer H.
        • el Sayed M.
        • et al.
        A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent.
        J Lipid Res. 1989; 30: 627-630
        • Stocker R.
        • Keaney Jr., J.F.
        Role of oxidative modifications in atherosclerosis.
        Physiol Rev. 2004; 84: 1381-1478
        • De Grey A.D.
        HO2: the forgotten radical.
        DNA Cell Biol. 2002; 21: 251-257
        • Roginsky V.
        • Barsukova T.
        Superoxide dismutase inhibits lipid peroxidation in micelles.
        Chem Phys Lipids. 2001; 111: 87-91
        • Pastor I.
        • Esquembre R.
        • Micol V.
        • Mallavia R.
        • Mateo C.R.
        A ready-to-use fluorimetric biosensor for superoxide radical using superoxide dismutase and peroxidase immobilized in sol–gel glasses.
        Anal Biochem. 2004; 334: 335-343
        • Jezek P.
        • Hlavata L.
        Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism.
        Int J Biochem Cell Biol. 2005;
        • Ichikawa I.
        • Kiyama S.
        • Yoshioka T.
        Renal antioxidant enzymes: their regulation and function.
        Kidney Int. 1994; 45: 1-9
        • Witko Sarsat V.
        • Friedlander M.
        • Capeillere Blandin C.
        • et al.
        Advanced oxidation protein products as a novel marker of oxidative stress in uremia.
        Kidney Int. 1996; 49: 1304-1313
        • Moriyama T.
        • Kawada N.
        • Nagatoya K.
        • et al.
        Oxidative stress in tubulointerstitial injury: therapeutic potential of antioxidants towards interstitial fibrosis.
        Nephrol Dial Transplant. 2000; 15: 47-49
        • Toborek M.
        • Wasik T.
        • Drózdz M.
        • et al.
        Effect of hemodialysis on lipid peroxidation and antioxidant system in patients with chronic renal failure.
        Metabolism. 1992; 41: 1229-1232
        • Epperlein M.M.
        • Nourooz-Zadeh J.
        • Jayasena S.D.
        • et al.
        Nature and biological significance of free radicals generated during bicarbonate hemodialysis.
        J Am Soc Nephrol. 1998; 9: 457-463
        • Hannken T.
        • Schroeder R.
        • Stahl R.A.K.
        • Wolf G.
        Angiotensin II-mediated expression of p27Kip1 induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals.
        Kidney Int. 1998; 54: 1923-1933
        • Chua C.C.
        • Hamdy R.C.
        • Chua B.H.
        Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells.
        Free Radic Biol Med. 1998; 25: 891-897
        • Ushio-Fukai M.
        • Tang Y.
        • Fukai T.
        • et al.
        Novel role of gp91phox-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis.
        Circ Res. 2002; 91: 1160-1167
        • Klahr S.
        Oxygen radicals and renal diseases.
        Miner Electrolyte Metab. 1997; 23: 140-143
        • Klahr S.
        • Morrissey J.J.
        The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease.
        Kidney Int Suppl. 2000; 75: S7-S14
        • Boonstra J.
        • Post J.A.
        Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells.
        Gene. 2004; 337: 1-13
        • Aronis A.
        • Madar Z.
        • Tirosh O.
        Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis.
        Free Radic Biol Med. 2005; 38: 1221-1230
        • Brandes R.P.
        • Viedt C.
        • Nguyen K.
        • et al.
        Thrombin-induced MCP-1 expression involves activation of the p22phox-containing NADPH oxidase in human vascular smooth muscle cells.
        Thromb Haemost. 2001; 85: 1104-1110
        • Heinloth A.
        • Fischer B.
        • Brüne B.
        • Galle J.
        Nitric oxide prevents oxidized LDL-induced p53 accumulation, cytochrome c translocation, and apoptosis in macrophages via guanylate cyclase stimulation.
        Atherosclerosis. 2002; 162: 93-101
        • Galle J.
        • Heinloth A.
        • Wanner C.
        • Heermeier K.
        Dual effect of oxidized LDL on cell cycle in human endothelial cells through oxidative stress.
        Kidney Int. 2001; 59: S120-S123
        • Wolf G.
        • Shankland S.J.
        p27Kip1: the “rosebud” of diabetic nephropathy?.
        J Am Soc Nephrol. 2003; 14: 819-822
        • Shankland S.J.
        • Wolf G.
        Cell cycle regulatory proteins in renal disease: role in hypertrophy, proliferation, and apoptosis.
        Am J Physiol Renal Physiol. 2000; 278: F515-F529
        • Rosenblatt J.
        • Gu Y.
        • Morgan D.O.
        Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associates with cyclin A.
        Proc Natl Acad Sci USA. 1992; 89: 2824-2828
        • Hoang A.T.
        • Cohen K.J.
        • Barrett J.F.
        • Bergstrom D.A.
        • Dang C.V.
        Participation of cyclin A in Myc-induced apoptosis.
        Proc Natl Acad Sci USA. 1994; 91: 6875-6879
        • Meikrantz W.
        • Gisselbrecht S.
        • Tam S.W.
        • Schlegel R.
        Activation of cyclin A-dependent protein kinases during apoptosis.
        Proc Natl Acad Sci USA. 1994; 91: 3754-3758
        • Shi L.
        • Chen G.
        • He D.
        • et al.
        Granzyme B induces apoptosis and cyclin A-associated cyclin-dependent kinase activity in all stages of the cell cycle.
        J Immunol. 1996; 157: 2381-2385
        • Zhou B.B.
        • Li H.
        • Yuan J.
        • Kirschner M.W.
        Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells.
        Proc Natl Acad Sci USA. 1998; 95: 6785-6790
        • Polyak K.
        • Lee M.H.
        • Erdjument B.H.
        • et al.
        Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals.
        Cell. 1994; 78: 59-66
        • Nourse J.
        • Firpo E.
        • Flanagan W.M.
        • et al.
        Interleukin-2-mediated elimination of the p27Kip1 cyclin-dependent kinase inhibitor prevented by rapamycin.
        Nature. 1994; 372: 570-573
        • Johnson D.G.
        • Walker C.L.
        Cyclins and cell cycle checkpoints.
        Annu Rev Pharmacol Toxicol. 1999; 39: 295-312
        • Sherr C.J.
        • Roberts J.M.
        CDK inhibitors: positive and negative regulators of G1-phase progression.
        Genes Dev. 1999; 13: 1501-1512
        • Sgambato A.
        • Cittadini A.
        • Faraglia B.
        • Weinstein I.B.
        Multiple functions of p27(Kip1) and its alterations in tumor cells: a review.
        J Cell Physiol. 2000; 183: 18-27
        • Seibold S.
        • Schurle D.
        • Heinloth A.
        • et al.
        Oxidized LDL induces proliferation and hypertrophy in human umbilical vein endothelial cells via regulation of p27Kip1 expression: role of RhoA.
        J Am Soc Nephrol. 2004; 15: 3026-3034
        • Seasholtz T.M.
        • Zhang T.
        • Morissette M.R.
        • et al.
        Increased expression and activity of RhoA are associated with increased DNA synthesis and reduced p27Kip1 expression in the vasculature of hypertensive rats.
        Circ Res. 2001; 89: 488-495
        • Galle J.
        • Mameghani A.
        • Bolz S.S.
        • et al.
        Oxidized LDL and its compound lysophosphatidylcholine potentiate AngII-induced vasoconstriction by stimulation of RhoA.
        J Am Soc Nephrol. 2003; 14: 1471-1479
        • Bishop A.L.
        • Hall A.
        Rho GTPases and their effector proteins.
        Biochem J. 2000; 348: 241-255
        • Ishizaki T.
        • Naito M.
        • Fujisawa K.
        • et al.
        p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions.
        FEBS Lett. 1997; 404: 118-124
        • Nakagawa O.
        • Fujisawa K.
        • Ishizaki T.
        • et al.
        ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice.
        FEBS Lett. 1996; 392: 189-193
        • Amano M.
        • Fukata Y.
        • Kaibuchi K.
        Regulation and functions of Rho-associated kinase.
        Exp Cell Res. 2000; 261: 44-51
        • Iwamoto H.
        • Nakamuta M.
        • Tada S.
        • et al.
        A p160ROCK-specific inhibitor, Y-27632, attenuates rat hepatic stellate cell growth.
        J Hepatol. 2000; 32: 762-770
        • Auge N.
        • Garcia V.
        • Maupas-Schwalm F.
        • et al.
        Oxidized LDL-induced smooth muscle cell proliferation involves the EGF receptor/PI-3 kinase/Akt and the sphingolipid signaling pathways.
        Arterioscler Thromb Vasc Biol. 2002; 22: 1990-1995
        • Auge N.
        • Maupas-Schwalm F.
        • Elbaz M.
        • et al.
        Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation.
        Circulation. 2004; 110: 571-578
        • Chen J.
        • Mehta J.L.
        • Haider N.
        • et al.
        Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells.
        Circ Res. 2004; 94: 370-376
        • Zettler M.E.
        • Prociuk M.A.
        • Austria J.A.
        • Zhong G.
        • Pierce G.N.
        Oxidized low-density lipoprotein retards the growth of proliferating cells by inhibiting nuclear translocation of cell cycle proteins.
        Arterioscler Thromb Vasc Biol. 2004; 24: 727-732
        • Heistad D.D.
        • Armstrong M.L.
        • Marcus M.L.
        • Piegors D.J.
        • Mark A.L.
        Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys.
        Circ Res. 1984; 54: 711-718
        • Rosendorff C.
        • Hoffman J.I.E.
        • Verrier E.D.
        • Rouleau J.
        • Boerboom L.E.
        Cholesterol potentiates the coronary artery response to norepinephrine in anesthetized and conscious dogs.
        Circ Res. 1981; 48: 320-329
        • Shimokawa H.
        • Tomoike H.
        • Nabeyama S.
        • et al.
        Coronary artery spasm induced in miniature swine: angiographic evidence and relation to coronary atherosclerosis.
        Am Heart J. 1985; 110: 300-310
        • Galle J.
        • Busse R.
        • Bassenge E.
        Hypercholesterolemia and atherosclerosis change vascular reactivity in rabbits by different mechanisms.
        Arterioscler Thromb. 1991; 11: 1712-1718
        • Verbeuren T.
        • Jordaens F.
        • Zonnekeyn L.
        • et al.
        Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits.
        Circ Res. 1986; 58: 552-564
        • Rubanyi G.M.
        • Vanhoutte P.M.
        Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor.
        Am J Physiol. 1986; 250: H822-H827
        • Flavahan N.A.
        Atherosclerosis or lipoprotein-induced endothelial dysfunction—potential mechanisms underlying reduction in EDRF/nitric oxide activity.
        Circulation. 1992; 85: 1927-1938
        • Jessup W.
        Oxidized lipoproteins and nitric oxide.
        Curr Opin Lipidol. 1996; 7: 274-280
        • Sachinidis A.
        • Locher R.
        • Mengden T.
        • Steiner A.
        • Vetter W.
        Vasoconstriction: a novel activity for low density lipoprotein.
        Biochem Biophys Res Commun. 1989; 163: 315-320
        • Galle J.
        • Bassenge E.
        • Busse R.
        Oxidized low density lipoproteins potentiate vasoconstrictions to various agonists by direct interaction with vascular smooth muscle.
        Circ Res. 1990; 66: 1287-1293
        • Somlyo A.P.
        • Somlyo A.V.
        Signal transduction and regulation in smooth muscle.
        Nature. 1994; 372 ([published erratum appears in Nature 1994;372(December (6508)):812]): 231-236
        • Bolz S.S.
        • Galle J.
        • Derwand R.
        • De Wit C.
        • Pohl U.
        Oxidized LDL increase the sensitivity of the contractile apparatus in isolated resistance arteries for Ca2+ via a Rho- and Rho-kinase-dependent mechanism.
        Circulation. 2000; 102: 2402-2410
        • Kandabashi T.
        • Shimokawa H.
        • Miyata K.
        • et al.
        Inhibition of myosin phosphatase by upregulated Rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1β.
        Circulation. 2000; 101: 1319-1323
        • Kandabashi T.
        • Shimokawa H.
        • Mukai Y.
        • et al.
        Involvement of Rho-kinase in agonists-induced contractions of arteriosclerotic human arteries.
        Arterioscler Thromb Vasc Biol. 2002; 22: 243-248
        • Batchelor T.J.P.
        • Sadaba J.R.
        • Ishola A.
        • et al.
        Rho-kinase inhibitors prevent agonist-induced vasospasm in human internal mammary artery.
        Br J Pharmacol. 2001; 132: 302-308