Advertisement

Does oxidative stress change ceruloplasmin from a protective to a vasculopathic factor?

      Abstract

      Although ceruloplasmin (CP), a copper containing metalloenzyme, possesses antioxidant properties (e.g. ferroxidase activity), elevated circulating CP is associated with cardiovascular disease (CVD). This ambivalence is possibly due to the capacity of CP, via its coppers, to promote vasculopathic effects that include lipid oxidation, negation of nitric oxide bioactivity and endothelial cell apoptosis. In turn, these effects that are mediated by increased formation of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. There is also evidence that risk factors for CVD (in particular, diabetes mellitus and hyperhomocysteinaemia) may augment the vasculopathic impact of CP. In turn, it appears that ROS disrupt copper binding to CP, thereby impairing its normal protective function while liberating copper which in turn may promote oxidative pathology. The objective of this review, therefore, is to consider the epidemiology and pathophysiology of CP in relation to CVD, with particular emphasis on the relationship between CP and oxidative stress.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fox P.L.
        • Mazumder B.
        • Ehrenwald E.
        • et al.
        Caeruloplasmin and cardiovascular disease.
        Free Radic Biol Med. 2000; 28: 1735-1744
        • Holmberg G.C.
        • Laurell C.B.
        Investigation serum copper. Part II: isolation of the copper containing protein, and a description of some of its properties.
        Acta Chem Scand. 1948; 2: 550-556
        • Mazumder B.
        • Mukhopadhyay C.K.
        • Prok A.
        • et al.
        Induction of caeruloplasmin synthesis by IFN-γ in human monocytic cells.
        J Immunol. 1997; 159: 1938-1944
        • Fox P.L.
        • Mukhopadhyay C.
        • Ehrenwald E.
        Structure, oxidant activity, and cardiovascular mechanisms of human caeruloplasmin.
        Life Sci. 1995; 56: 1749-1758
        • Fortna R.R.
        • Watson H.A.
        • Nyquist S.E.
        Glycosylphosphatidylinostiol-anchored caeruloplasmin is expressed by rat Sertoli cells and is concentrated in detergent-insoluble membrane fragments.
        Biol Reprod. 1999; 61: 1042-1049
        • Floris G.
        • Medda R.
        • Padiglia A.
        • et al.
        The physiopathological significance of caeruloplasmin.
        Biochem Pharmacol. 2000; 60: 1735-1741
        • Harris E.D.
        A requirement for copper in angiogenesis.
        Nutr Rev. 2004; 60: 60-64
        • Hannan G.N.
        • McAuslen B.R.
        Modulation of synthesis of specific proteins in endothelial cells by copper, cadmium, and disulfiram: an early response to an angiogenic inducer of cell migration.
        J Cell Physiol. 1982; 111: 207-212
        • Bielli P.
        • Calabrese L.
        Structure to function relationships in caeruloplasmin: a ‘moonlighting’ protein.
        Cell Mol Life Sci. 2002; 59: 1413-1427
        • Solomon E.I
        • Sundaram U.M.
        • Machonkin T.E.
        Multicopper oxidases and oxygenases.
        Chem Rev. 1996; 96: 2563-2605
        • Malmstrom B.G.
        Enzymology of oxygen.
        Annu Rev Biochem. 1982; 51: 21-59
        • Mukhopadhyay C.K.
        • Mazumder B.
        • Lindley P.F.
        • et al.
        Identification of the pro-oxidant site of human caeruloplasmin: a model for oxidative damage by copper bound to protein surfaces.
        Proc Natl Acad Sci USA. 1997; 94: 11546-11551
        • Tapiero H.
        • Townsend D.M.
        • Tew K.D.
        Trace elements and pathology: copper.
        Biomed Pharmacother. 2003; 57: 386-398
        • Prohaska J.R.
        • Gybina A.A.
        Intracellular copper transport in mammals.
        J Nutr. 2004; 134: 1003-1006
        • Petris M.J.
        The SLC31 (Ctr) copper transporter family.
        Pflugers Arch. 2004; 447: 752-755
        • Field L.S.
        • Luk E.
        • Culotta V.C.
        Copper chaperones: personal escorts for metal ions.
        J Bioenerg Biomemb. 2002; 34: 373-379
        • Tavassoli M.
        • Kishimoto T.
        • Kataoka M.
        Liver endothelium mediates the hepatocytes's uptake of ceruloplasmin.
        J Cell Biol. 1986; 102: 1298-1303
        • Patel B.N.
        • David S.
        A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes.
        J Biol Chem. 1997; 272: 20185-20190
        • Rae T.D.
        • Schmidt P.J.
        • Pufahl R.A.
        • et al.
        Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase.
        Science. 1999; 284: 805-808
        • Attieh Z.K.
        • Mukhopadhyay C.K.
        • Seshadri V.
        • et al.
        Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism.
        J Biol Chem. 1999; 274: 1116-1123
        • Kosman D.J.
        FET3P, ceruloplasmin, and the role of copper in iron metabolism.
        Adv Protein Chem. 2002; 60: 221-269
        • Harris Z.L.
        Aceruloplasminemia.
        Neurol Sci. 2003; 207: 108-109
        • Meyer L.A.
        • Durley A.P.
        • Prohaska J.R.
        • et al.
        Copper transport and metabolism are normal in acaeruloplasminaemic mice.
        J Biol Chem. 2001; 276: 36857-36861
        • Engström G.
        • Lind P.
        • Hedblad B.
        • et al.
        The effects of cholesterol and inflammation-sensitive proteins on incidence of stroke and myocardial infarction.
        Circulation. 2002; 105: 2632-2637
        • Engström G.
        • Lind P.
        • Hedblad B.
        • et al.
        Long-term effects of inflammation-sensitive plasma proteins and systolic blood pressure on incidence of stroke.
        Stroke. 2002; 33: 2744-2749
        • Engström G.
        • Lind P.
        • Hedblad B.
        • et al.
        Blood pressure increase and incidence of hypertension in relation to inflammation-sensitive proteins.
        Arterioscler Thromb Vasc Biol. 2002; 22: 2054-2058
        • Engström G.
        • Stavenow L.
        • Hedblad B.
        • et al.
        Inflammation-sensitive plasma proteins, diabetes, and mortality and incidence of myocardial infarction and stroke.
        Diabetes. 2003; 52: 442-447
        • Engström G.
        • Hedblad B.
        • Stavenow L.
        • et al.
        Inflammation-sensitive plasma proteins are associated with future weight gain.
        Diabetes. 2003; 52: 2097-2101
        • Lind P.
        • Hedblad B.
        • Stavenow L.
        • et al.
        Influence of plasma fibrinogen levels on the incidence of myocardial infarction and death is modified by other inflammation-sensitive proteins: a long-term cohort study.
        Arterioscler Thromb Vasc Biol. 2001; 21: 452-458
        • Ferns G.A.A.
        • Lamb D.J.
        • Taylor A.
        The possible role of copper ions in atherogenesis: the Blue Janus.
        Atherosclerosis. 1997; 133: 139-152
        • Koshinsky M.L.
        • Funk W.D.
        • van Oost B.A.
        • MacGillivray R.T.A.
        Complete cDNA sequence of human preceruloplasmin.
        Proc Natl Acad Sci USA. 1986; 83: 5086-5090
        • Daimon M.
        • Yamatani K.
        • Igarashi M.
        • et al.
        Fine structure of the human ceruloplasmin gene.
        Biochem Biophys Res Comm. 1995; 208: 1028-1035
        • Daimon M.
        • Kato T.
        • Kawanami T.
        • et al.
        A nonsense mutation of the ceruloplasmin gene in hereditary ceruloplasmin deficiency with diabetes mellitus.
        Biochem Biophys Res Commun. 1995; 217: 89-95
        • Harris Z.L.
        • Takahashi Y.
        • Miyajima H.
        • et al.
        Aceruloplasminemia: molecular characterization of this disorder of iron metabolism.
        Proc Natl Acad Sci USA. 1995; 92: 2539-2543
        • Takahashi Y.
        • Miyajima H.
        • Shirabe S.
        • et al.
        Characterization of a nonsense mutation in the ceruloplasmin gene resulting in diabetes and neurodegenerative disease.
        Hum Mol Genet. 1996; 5: 81-84
        • Yoshida K.
        • Furihata K.
        • Takeda S.
        • et al.
        A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans.
        Nat Genet. 1995; 9: 267-272
        • Yazaki M.
        • Yoshida K.
        • Nakamura A.
        • et al.
        A novel splicing mutation in the ceruloplasmin gene responsible for hereditary ceruloplasmin deficenicey with hemosiderosis.
        J Neurol Sci. 1998; 156: 3-10
        • Ford E.S.
        Serum copper concentration and coronary heart disease among US adults.
        Am J Epidemiol. 2000; 151: 1182-1188
        • Hansson G.K.
        Inflammation, atherosclerosis, and coronary artery disease.
        N Engl J Med. 2005; 352: 1685-1695
        • Kok F.J.
        • Van Duijn C.M.
        • Hofman A.
        • et al.
        Serum copper and zinc and the risk of death from cancer and cardiovascular disease.
        Am J Epidemiol. 1988; 128: 352-359
        • Salonen J.T.
        • Salonen R.
        • Korpela H.
        • et al.
        Serum copper and the risk of acute myocardial infarction: a prospective study in men in Eastern Finland.
        Am J Epidemiol. 1991; 134: 268-276
        • Salonen J.T.
        • Salonen R.
        • Seppanen K.
        • et al.
        Interactions of serum copper, selenium and low density lipoprotein cholesterol in atherogenesis.
        Br Med J. 1991; 302: 756-760
        • Manttari M.
        • Manninen V.
        • Huttunen J.K.
        • et al.
        Serum ferritin and caeruloplasmin as coronary risk factors.
        Eur Heart J. 1994; 15: 1599-1603
        • Reunanen A.
        • Knekt P.
        • Aaran R.K.
        Serum caeruloplasmin level and risk of myocardial infarction and stroke.
        Am J Epidemiol. 19992; 136: 1082-1090
        • Klipstein-Grobusch K.
        • Grobbee D.E
        • Koster J.F.
        • et al.
        Serum caeruloplasmin as a coronary risk factor in the elderly: the Rotterdam study.
        Br J Nutr. 1999; 81: 139-144
        • Cunningham J.
        • Leffell M.
        • Mearkle P.
        • et al.
        Elevated plasma caeruloplasmin in insulin-dependent diabetes mellitus: evidence for increased oxidative stress as a variable complication.
        Metabolism. 1995; 44: 996-999
        • Daimon M.
        • Susa S.
        • Yamatani K.
        • et al.
        Hyperglycaemia is a factor for an increase in serum caeruloplasmin in type 2 diabetes.
        Diab Care. 1998; 21: 1525-1528
        • Daimon M.
        • Sugiyama K.
        • Saitoh T.
        • et al.
        Increase in serum caeruloplasmin levels is correlated with a decrease of serum nitric oxide levels in type 2 diabetes.
        Diab Care. 2000; 23: 559-560
        • Walter Jr., R.M.
        • Uriu-Hare J.Y.
        • Olin K.L.
        • et al.
        Copper, zinc, manganese and magnesium status and complications of diabetes mellitus.
        Diab Care. 1991; 14: 1050-1056
        • Zargar A.H.
        • Shah N.A.
        • Masoodi S.R.
        • et al.
        Copper, zinc and magnesium levels in non-insulin dependent diabetes mellitus.
        Postgrad Med J. 1998; 74: 665-668
        • Beckman J.A.
        • Creager M.A.
        • Libby P.
        Diabetes and atherosclerosis: epidemiology, pathophysiology and management.
        JAMA. 2002; 287: 2570-2581
        • Reaven G.
        The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals.
        Endocrinol Metab Clin North Am. 2004; 33: 283-303
        • Kim C.H.
        • Park J.Y.
        • Kim J.Y.
        • et al.
        Elevated serum ceruloplasmin levels in subjects with metabolic syndrome: a population-based study.
        Metabolism. 2002; 51: 838-842
        • McCully K.S.
        Homocysteine and vascular disease.
        Nat Med. 1996; 2: 386-389
        • Dudman N.P.B.
        • Wilcken D.E.L.
        Increased plasma copper in patients with homocysteinuria due to cystathionine β-synthase deficiency.
        Clin Chim Acta. 1983; 127: 105-113
        • Mansoor M.A.
        • Bergmark C.B.
        • Haswell S.J.
        • et al.
        Correlation between plasma total homocysteine and copper in patients with peripheral vascular disease.
        Clin Chem. 2000; 46: 385-391
        • Jeremy J.Y.
        • Shukla N.
        • Angelini G.D.
        • et al.
        Sustained increases of plasma homocysteine, copper and serum caeruloplasmin after coronary artery bypass grafting.
        Ann Thorac Surg. 2002; 74: 1553-1557
        • Tungtrongchitr R.
        • Pongpaew P.
        • Phonrat B.
        • et al.
        The effect of cigarette smoking on caeruloplasmin and C3 complement: risk of cardiovascular disease (atherosclerosis).
        Asian Pacif J Allergy Immunol. 2002; 20: 23-28
        • Jeremy J.Y.
        • Shukla N.
        • Muzaffar S.
        • Angelin G.D.
        Reactive oxygen species, vascular disease and cardiovascular surgery.
        Curr Vasc Pharmacol. 2004; 2: 229-236
        • Burkitt M.J.
        A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin.
        Arch Biochem Biophys. 2001; 394: 117-135
        • Halliwell B.
        Antioxidant defence mechanisms: from the beginning to the end (of the beginning).
        Free Radic Res. 1999; 31: 261-272
        • Betteridge D.J.
        What is oxidative stress?.
        Metabolism. 2000; 49: 3-8
        • Muzaffar S.
        • Shukla N.
        • Jeremy J.Y.
        NADPH oxidase: a promiscuous target for cardiovascular drugs?.
        Trends Cardiovasc Med. 2005; 15: 278-282
        • Muzaffar S.
        • Jeremy J.Y.
        • Angelini G.D.
        • et al.
        The role of the endothelium and nitric oxide synthases in modulating superoxide formation induced by endotoxin and cytokines in porcine pulmonary arteries.
        Thorax. 2003; 58: 598-604
        • Muzaffar S.
        • Shukla N.
        • Angelini G.D.
        • Jeremy J.Y.
        Nitroaspirins and morpholinosydnonimine, but not aspirin, inhibit the formation of superoxide and the expression of gp91phox induced by endotoxin and cytokines in pig pulmonary artery vascular smooth muscle cells and endothelial cells.
        Circulation. 2004; 110: 1140-1147
        • Muzaffar S.
        • Shukla N.
        • Lobo C.
        • et al.
        Iloprost inhibits NADPH oxidase expression and superoxide release in porcine pulmonary arteries and cells stimulated with thromboxane A2, isoprostane F2α and cytokines.
        Br J Pharmacol. 2004; 141: 488-496
      1. Muzaffar S, Shukla N, Angelini GD, Jeremy JY. Superoxide augments superoxide formation through upregulation of NADPH oxidase expression. Proc Br Pharm Soc 2005;21(4); abstract 17P.html (http://www.pa2online.org).

        • Muzaffar S.
        • Shukla N.
        • Angelini G.D.
        • Jeremy J.Y.
        Hypoxia simultaneously induces the expression of gp91phox and endothelial nitric oxide synthase in the pulmonary artery.
        Thorax. 2005; 60: 305-313
        • Darley-Usmar V.
        • White R
        Disruption of vascular signalling by the reaction of nitric oxide with superoxide: implication for cardiovascular disease.
        Exper Physiol. 1997; 82: 305-316
        • Jeremy J.Y.
        • Rowe D.
        • Emsley A.M.
        • Newby A.C.
        Nitric oxide and vascular smooth muscle cell proliferation.
        Cardiovasc Res. 1999; 43: 658-665
        • Jeremy J.Y.
        • Yim A.P.
        • Wan S.
        • Angelini G.D.
        Oxidative stress, nitric oxide and vascular disease.
        Cardiovasc Surg. 2002; 17: 324-327
        • Koppenol W.H.
        The centennial of the Fenton reaction.
        Free Radic Biol Med. 1993; 15: 645-651
        • Koppenol W.H.
        The Haber–Weiss cycle—70 years on.
        Redox Rep. 2001; 6: 229-234
        • Gutteridge J.M.
        Copper-phenanthroline-induced site-specific oxygen-radical damage to DNA: detection of loosely bound trace copper in biological fluids.
        Biochem J. 1984; 218: 983-985
        • Musci G.
        • Fraterrigo T.Z.L.
        • Calabrese L.
        • McMillin D.R.
        On the lability and functional singnifcance of the type I copper pool in ceruloplasmin.
        JBIC. 1999; 4: 441-446
        • Kim R.H.
        • Park J.E.
        • Park J.W.
        Ceruloplasmin enhances DNA damage induced by hydrogen peroxide in vitro.
        Free Radic Res. 2000; 33: 81-89
        • Choi S.Y.
        • Kwon H.Y.
        • Kwon O.B.
        • et al.
        Fragmentation of human ceruloplasmin induced by hydrogen peroxide.
        Biochimie. 2000; 82: 175-180
        • Swain J.A.
        • Darley-Usmar V.
        • Gutteridge J.M.
        Peroxynitrite releases copper from ceruloplasmin: implications for atherosclerosis.
        FEBS Lett. 1994; 342: 49-52
        • Kang J.H.
        • Kim K.S.
        • Choi S.Y.
        • et al.
        Oxidative modification of human cerluoplasmin by peroxyl radicals.
        Biochim Biophys Acta. 2001; 1568: 30-36
        • Fabisiak J.P.
        • Borisenko G.G.
        • Liu S.X.
        • et al.
        Redox sensor function of metallothioneins.
        Methods Enzymol. 2002; 353: 268-281
        • Andrews G.K.
        Regulation of metallothionein gene expression.
        Prog Food Nutr Sci. 1990; 14: 193-258
        • Kruszewski M.
        The role of labile iron pool in cardiovascular diseases.
        Acta Biochim Pol. 2004; 51: 471-480
        • Stadler N.
        • Linder R.A.
        • Davies M.J.
        Direct detection and quantification of transition metal ions in human atherosclerotic plaques: evidence for the presence of elevated levels of iron and copper.
        ATVB. 2004; 24: 949-954
        • Mattie M.D.
        • Freedman J.H.
        Copper-inducible transcription: regulation by metal- and oxidative stress responsive pathways.
        Am J Cell Physiol. 2004; 286: C293-C301
        • Samet J.M.
        • Graves L.M.
        • Quay J.
        • et al.
        Activation of MAPKs in human bronchial epithelial cells exposed to metals.
        Am J Physiol. 1998; 275: L551-L558
        • Ehrenwald E.
        • Chisholm G.M.
        • Fox P.L.
        Intact human caeruloplasmin oxidatively modifies low density lipoprotein.
        J Clin Invest. 1994; 93: 1493-1501
        • Mukhopadhyay C.M.
        • Fox P.L.
        Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as areductant.
        Biochemistry. 1998; 37: 14222-14229
        • Mukhopadhyay C.M.
        • Ehrenwald E.
        • Fox P.L.
        Ceruloplasmin enhances smooth muscle cell and endothelial cell mediated low density lipoprotein oxidation by a superoxide dependent mechanism.
        J Biol Chem. 1996; 271: 14773-14778
        • Loscalzo J.
        The oxidant stress of hyperhomocysteinaemia.
        J Clin Invest. 1996; 98: 5-7
        • Pfanzagl B.
        • Tribl F.
        • Koller E.
        • Moslinger T.
        Homocysteine strongly enhances metal catalyzed LDL oxidation in the presence of cystine and cysteine.
        Atherosclerosis. 2003; 168: 39-48
        • Munday R.
        • Munday C.M.
        • Winterbourn C.C.
        Inhibition of copper-catalyzed cysteine oxidation by nanomolar concentrations of iron salts.
        Free Radic Biol Med. 2004; 36: 757-764
        • Held K.D.
        • Sylvester F.C.
        • Hopcia K.L.
        • Biaglow J.E.
        Role of Fenton chemistry in thiol-induced toxicity and apoptosis.
        Radiat Res. 1996; 145: 542-553
        • Kachur A.V.
        • Koch C.J.
        • Biaglow J.E.
        Mechanism of copper-catalyzed autooxidation of cysteine.
        Free Radic Res. 1999; 31: 23-34
        • Kachur A.V.
        • Koch C.J.
        • Biaglow J.E.
        Mechanism of copper-catalyzed oxidation of glutathione.
        Free Radic Res. 1998; 28: 259-269
        • El-Khairy L.
        • Vollset S.E.
        • Refsum H.
        • Ueland P.M.
        Plasma total cysteine, mortality, cardiovascular disease hospitalisations: The Hordaland homocysteine study.
        Clin Chem. 2003; 49: 895-900
        • Wall R.T.
        • Harlan J.M.
        • Harker L.A.
        • et al.
        Homocysteine-induced endothelial cell injury in vitro: a model for the study of vascular injury.
        Thrombos Res. 1980; 18: 113-121
        • Starkebaum G.
        • Harlan J.M.
        Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine.
        J Clin Invest. 1986; 77: 1370-1376
        • Zwart J.
        • Van Wolput H.M.C.
        • van den Cammen J.C.M.
        • et al.
        Accumulation and reactions of H2O2 during the copper iron catalyzed autooxidation of cysteine in alkaline medium.
        J Mol Catal. 1981; 11: 69-82
        • Moat S.J.
        • Doshi S.N.
        • Lang D.
        • et al.
        Treatment of coronary heart disease with folic acid: is there a future?.
        Am J Physiol. 2004; 287: H1-H7
        • Cappelli-Bigazzi M.
        • Ambrosio G.
        • Musci G.
        • et al.
        Ceruloplasmin impairs endothelium- dependent relaxation of rabbit aorta.
        Am J Physiol. 1997; 273: H2843-H2849
        • Emsley A.
        • Jeremy J.Y.
        • Gomes G.
        • Angelini G.D.
        • Plane F.
        Copper interacts with homocysteine to inhibit nitric oxide formation in the rat isolated aorta.
        Br J Pharmacol. 1999; 126: 1034-1040
        • Plane F.
        • Wigmore S.
        • Angelini G.D.
        • et al.
        Effect of copper on nitric oxide synthase and guanylyl cyclase activity in the rat isolated aorta.
        Br J Pharmacol. 1997; 121: 345-350
        • Radi R.
        • Beckman J.S.
        • Bush K.M.
        • et al.
        Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide.
        J Biol Chem. 1991; 266: 4244-4250
        • Welch G.N.
        • Loscalzo J.
        Homocysteine and atherosclerothrombosis.
        N Engl J Med. 1998; 4: 1042-1050
        • Halvorsen B.
        • Brude I.
        • Drevon C.A.
        • et al.
        Effect of homocysteine on copper ion-catalyzed, azo compound-initiated, and mononuclear cell-mediated oxidative modification of low density lipoprotein.
        J Lipid Res. 1996; 37: 1591-1600
        • Heinecke J.W.
        • Kawamura M.
        • Chait A.
        Oxidation of low density lipoprotein by thiols: superoxide dependent and independent mechanisms.
        J Lipid Res. 1993; 34: 2051-2061
        • Exner M.
        • Hermann M.
        • Hofbauer R.
        • et al.
        Homocysteine promotes the LDL oxidase activity of ceruloplasmin.
        FEBS Lett. 2002; 531: 402-406
        • Pfanzagl B.
        • Tribl F.
        • Koller E.
        • Moslinger T.
        Homocysteine strongly enhances metal-catalyzed LDL oxidation in the presence of cystine and cysteine.
        Atherosclerosis. 2003; 168: 39-48
        • Nakano E.
        • Williamson M.P.
        • Williams N.H.
        • Powers H.J.
        Copper-mediated LDL oxidation by homocysteine and related compounds depends largely on copper ligation.
        Biochim Biophys Acta. 2004; 1688: 33-41
        • Winterbourn C.C.
        • Peskin A.V.
        • Parsons-Mair N.
        Thiol oxidase activity of copper zinc SOD.
        J Biol Chem. 2002; 277: 1906-1911
        • Hayes J.D.
        • McLellan L.I.
        Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress.
        Free Radic Res. 1999; 31: 273-300
        • Nyberg G.K.
        • Granberg G.P.
        • Carlsson J.
        Bovine superoxide dismutase and copper ions potentiate the bactericidal effect of autoxidizing cysteine.
        Appl Environ Microbiol. 1979; 38: 29-34
        • Hogg N.
        The effect of cyst(e)ine on the auto-oxidation of homocysteine.
        Free Radic Biol Med. 1999; 27: 28-33
        • Apostolova M.D.
        • Bontchev P.R.
        • Ivanona B.B.
        • et al.
        Copper–homcysteine complexes and potential physiological actions.
        J Inorg Biochem. 2003; 95: 321-333
        • Tran-Ho L.C.
        • May P.M.
        • Hefter G.T.
        Complexation of copper(I) by thiamine acids: implications for copper speciation in blood plasma.
        J Inorg Chem. 1997; 68: 225-231
        • Hultberg B.
        • Andersson A.
        • Isaksson A.
        The cell-damaging effects of low amounts of homocysteine and copper ions in human cell line cultures are caused by oxidative stress.
        Toxicology. 1997; 21: 33-40
        • Hultberg B.
        • Andersson A.
        • Isaksson A.
        The effects of homocysteine and copper ions on the concentration and redox status of thiols in cell line cultures.
        Clin Chim Acta. 1997; 262: 39-51
        • Stark A.-A.
        • Glass G.A.
        Role of copper and ceruloplasmin in oxidative mutageneis by the glutathione-glutamyl transpeptidase system and by other thiols.
        Environ Mol Mutagen. 1997; 29: 63-72
        • Li Y.
        • Chen J.
        • Liu J.
        • Yang X.
        • Wang K.
        Binding of Cu2+ to S-adensoyl-l-homocysteine hydrolase.
        J Inorg Biochem. 2004; 98: 977-983
        • Sajithlal G.B.
        • Chithra P.
        • Chandrakasan G.
        An in vitro study on the role of metal catalyzed oxidation in glycation and crosslinking of collagen.
        Mol Cell Biochem. 1999; 194: 257-263
        • Kawamura N.
        • Ookawara T.
        • Suzuki K.
        • et al.
        Increased glycated CuZn-superoxide dismutase levels in erythrocytes of patients with insulin-dependent diabetes mellitus.
        J Clin Endocrinol Metab. 1993; 74: 1352-1354
        • Leonhardt W.
        • Hanefeld M.
        • Muller G.
        • et al.
        Impact of concentrations of glycated hemoglobin, alpha-tocopherol, copper, and manganese on oxidation of low-density lipoproteins in patients with type I diabetes, type II diabetes and control subjects.
        Clin Chim Acta. 1996; 254: 173-186
        • Shukla N.
        • Thompson C.S.
        • Angelini G.D.
        • et al.
        Homocysteine enhances impairment of endothelium-dependent relaxation and guanosine cyclic monophosphate formation in aortae from diabetic rabbits.
        Diabetologia. 2002; 45: 1325-1331
        • Eaton J.W.
        • Qian M.
        Interactions of copper with glycated proteins: possible involvement in the etiology of diabetic neuropathy.
        Mol Cell Biochem. 2002; 234: 135-142
        • Ito S.
        • Fujita H.
        • Narita T.
        • et al.
        Urinary copper excretion in type 2 diabetic patients with nephropathy.
        Nephron. 2001; 88: 307-312
        • Islam K.N.
        • Takahashi M.
        • Higashiyama S.
        • et al.
        Fragmentation of ceruloplasmin following non-enzymatic glycation reaction.
        J Biochem (Tokyo). 1995; 118: 1054-1060
        • Mandinova L.
        • Mandinova A.
        • Kyurkchiev S.
        • et al.
        Copper chelation represses the vascular response to injury.
        Proc Natl Acad Sci USA. 2003; 100: 6700-6705
        • Rucker R.B.
        • Kosoenen T.
        • Clegg M.S.
        • et al.
        Copper, lysyl oxidase and extracellular matrix protein cross-linking.
        Am J Clin Nutr. 1998; 67: 996S-1002S
        • Newby A.C.
        Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture.
        Physiol Rev. 2005; 85: 1-31
        • Moon S.K.
        • Jung S.Y.
        • Choi Y.H.
        • et al.
        PDTC, metal chelating compound, induces Gl phase cell cycle arrest in vascular smooth muscle cells through inducing p21Cipl expression: involvement of p38 mitogen activated protein kinase.
        Cell Physiol. 2004; 198: 310-323
        • Pan Q.
        • Bao L.W.
        • Merajver S.D.
        Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NFkappaB signaling cascade.
        Mol Cancer Res. 2003; 1: 701-706
      2. Shukla N, Koupparis A, Angelini GD, Jeremy JY. Penicillamine administration reverses the inhibitory effect of hyperhomocysteinaemia on endothelium-dependent relaxation and superoxide formation in the aorta of the rabbit. Eur J Pharmacol, in press.

        • Murakami K.
        • Ueda T.
        • Morikawa R.
        • et al.
        Antioxidant effect of dipicolinic acid on the metal-catalysed peroxidation and enzyme inactivation.
        Biomed Res. 1998; 19: 205-208
        • Murakami K.
        • Tanemura Y.
        • Yoshino M.
        Dipicolinic acid prevents the copper-dependent oxidation of low-density lipoprotein.
        J Nutr Biochem. 2003; 14: 99-103
      3. Roy S, Rauk A. Alzhemiers disease and the ABSENT hypothesis. Med Hypoth 2005;65:123–37.