Advertisement

Experimentally induced metabolic acidosis in rabbits modulates the interaction of aortic glycosaminoglycan with plasma low-density lipoprotein—An interesting observation about the association of acidosis and atherosclerosis

  • Ana M.F. Tovar
    Correspondence
    Corresponding author at: Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Caixa Postal 68 041, Rio de Janeiro, RJ 21941-590, Brazil. Tel.: +55 21 25622092; fax: +55 21 25622090.
    Affiliations
    Laboratório de Tecido Conjuntivo, Hospital Clementino Fraga Filho, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
    Search for articles by this author
  • Inah M.D. Pecly
    Affiliations
    Laboratório de Tecido Conjuntivo, Hospital Clementino Fraga Filho, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
    Search for articles by this author
  • Ednei P. Rangel
    Affiliations
    Serviço de Nefrologia, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Brazil
    Search for articles by this author
  • Nelson M. Melo-Filho
    Affiliations
    Laboratório de Tecido Conjuntivo, Hospital Clementino Fraga Filho, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
    Search for articles by this author
  • Paulo A.S. Mourão
    Affiliations
    Laboratório de Tecido Conjuntivo, Hospital Clementino Fraga Filho, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
    Search for articles by this author
  • Maurilo Leite Jr.
    Affiliations
    Serviço de Nefrologia, Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Brazil
    Search for articles by this author

      Abstract

      It is well established that arterial glycosaminoglycans (GAG) undergo compositional and structural modifications during the development of atherosclerosis. On the other hand, metabolic acidosis is a common feature of chronic renal patients known to present accelerated atherogenesis. The present study was performed to determine the influence of acidosis in the modifications of aortic GAG in a model of atherosclerosis in rabbits. For this purpose, four groups of rabbits were kept for 8 weeks on a regimen of normal, hypercholesterolemic, acidemic and hypercholesterolemic plus acidemic diets. No difference was detected in the total GAG concentration among animals fed with normal, hypercholesterolemic and acidemic diets. However, we observed an increase in total GAG content when acidosis was associated with hypercholesterolemia. This increase was more pronounced in the thoracic aortic segment. The interaction between LDL and the aortic GAG was evaluated by formation of insoluble complexes. The results showed that GAG extracted from hypercholesterolemic rabbits exhibited a lower ability to interact with LDL, when compared to those fed normal diet. On the other hand, GAG extracted from rabbits submitted to hypercholesterolemic plus acidemic diet, did not show this behavior. In addition, the molecular weight of GAG from hypercholesterolemic animals, is lower than those from animals fed normal diet. Surprisingly, acidosis associated with hypercholesterolemia did not exhibit this alteration, keeping the molecular weight close to the normal range. In view of these results, we hypothesize that acidosis itself does not affect either the GAG composition or its interaction with LDL, however in an atherogenic condition, as can be seen in renal failure individuals, it may alter the GAG concentration and the size of the glycan chains.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Williams K.
        • Tabas I.
        The response-to-retention hypothesis of early atherogenesis.
        Arterioscler Thromb Vasc Biol. 1995; 15: 551-561
        • Camejo G.
        • Hurt-Camejo E.
        • Wiklund O.
        • Bondjers G.
        Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis.
        Atherosclerosis. 1998; 139: 205-222
        • Srinivasan S.R.
        • Radhakrishnamurthy B.
        • Vijayagopal P.
        • Berenson G.S.
        Proteoglycans, lipoproteins, and atherosclerosis.
        Adv Exp Med Biol. 1991; 285: 373-381
        • Wagner W.D.
        • Edwards I.J.
        • St Clair R.W.
        • Barakat H.
        Low density lipoprotein interaction with artery derived proteoglycan: the influence of LDL particle size and the relationship to atherosclerosis susceptibility.
        Atherosclerosis. 1989; 75: 49-59
        • Skalen K.
        • Gustafsson M.
        • Rydberg E.K.
        • Hulten L.M.
        • Wiklund O.
        • Innerarity T.L.
        • et al.
        Subendothelial retention of atherogenic lipoproteins in early atherosclerosis.
        Nature. 2002; 417: 750-754
        • Li H.
        • Reddick R.L.
        • Maeda N.
        Lack of apoA-I is not associated with increased susceptibility to atherosclerosis in mice.
        Arterioscler Thromb. 1993; 13: 1814-1821
        • Mills G.L.
        • Taylaur C.E.
        The distribution and composition of serum lipoproteins in 18 animals.
        Comp Biochem Physiol [B]. 1971; 40: 489-501
        • Brown M.S.
        • Goldstein J.L.
        A receptor-mediated pathway for cholesterol homeostasis.
        Science. 1986; 232: 34-47
        • Kahn J.A.
        • Glueck C.J.
        Familial hypobetalipoproteinemia: absence of atherosclerosis in a postmortem study.
        JAMA. 1978; 240: 47-48
        • Kalantar-Zadeh K.
        • Stenvinkel P.
        • Pillon L.
        • Kopple J.D.
        Inflammation and nutrition in renal insufficiency.
        Adv Ren Replace Ther. 2003; 10: 155-169
        • Pecoits-Filho R.
        • Lindholm B.
        • Stenvinkel P.
        The malnutrition, inflammation, and atherosclerosis (MIA) syndrome—the heart of the matter.
        Nephrol Dial Transplant. 2002; 17: 28-31
        • Amann K.
        • Tyralla K.
        • Gross M.L.
        • Eifert T.
        • Adamczak M.
        • Ritz E.
        Special characteristics of atherosclerosis in chronic renal failure.
        Clin Nephrol. 2003; 60: 13-21
        • Charney D.I.
        • Walton D.F.
        • Cheung A.K.
        Atherosclerosis in chronic renal failure.
        Curr Opin Nephrol Hypertens. 1993; 2: 876-882
        • Morgan J.
        • Leake D.S.
        Acidic pH increases the oxidation of LDL by macrophages.
        FEBS Lett. 1993; 333: 275-279
        • Lamb D.J.
        • Leake D.S.
        Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein.
        FEBS Lett. 1994; 352: 15-18
        • Leake D.S.
        Does an acidic pH explain why low density lipoprotein is oxidised in atherosclerotic lesions?.
        Atherosclerosis. 1997; 129: 149-157
        • Bitter T.
        • Muir H.M.
        A modified uronic acid carbazole reaction.
        Anal Biochem. 1962; 4: 330-334
        • Havel R.J.
        • Eder H.A.
        • Bragdon J.H.
        The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum.
        J Clin Invest. 1955; 34: 1345-1353
        • Castro M.G.
        • Spruce B.A.
        • Savva D.
        • Lowry P.J.
        Expression of biologically active human pre-procorticotropin releasing hormone in E. coli: characterization and purification.
        Int J Biochem. 1990; 22: 1341-1349
        • Mourão P.A.S.
        • Bracamonte C.
        The binding of human aortic glycosaminoglycans and proteoglycans to plasma low density lipoprotein.
        Atherosclerosis. 1984; 50: 133-146
        • Tovar A.M.F.
        • Mourão P.A.S.
        High affinity of a fucosylated chondroitin sulfate for plasma low density lipoprotein.
        Atherosclerosis. 1996; 126: 185-195
        • Vijayagopal P.
        • Srinivasan S.R.
        • Radhakrishnamurthy B.
        • Berenson G.S.
        Interaction of serum lipoproteins and a proteoglycan from bovine aorta.
        J Biol Chem. 1981; 256: 8234-8241
        • Cardoso L.E.M.
        • Mourão P.A.S.
        Glycosaminoglycan fractions from human arteries presenting diverse susceptibilities to atherosclerosis have different binding affinities to plasma LDL.
        Artherioscler Thromb. 1994; 14: 115-124
        • Tovar A.M.
        • Cesar D.C.
        • Leta G.C.
        • Mourão P.A.S.
        Age-related changes in populations of aortic glycosaminoglycans: species with low-affinity for plasma low-density lipoproteins, and not species with high affinity, are preferentially affected.
        Arterioscler Thromb Vasc Biol. 1998; 18: 604-614
        • Haas M.J.
        • Reinacher D.
        • Li J.P.
        • Wong N.C.
        • Moorandian A.D.
        Regulation of apoA1 gene expression with acidosis: requirement for a transcriptional repressor.
        J Mol Endocrinol. 2001; 27: 43-57
        • Shirk R.A.
        • Parthasarathy N.
        • San Antonio J.D.
        • Church F.C.
        • Wagner W.D.
        Altered dermatan sulfate structure and reduced heparin cofactor II stimulating activity of biglycan and decorin from human atherosclerotic plaque.
        J Biol Chem. 2000; 275: 18085-18092
        • Camejo G.
        • Fager G.
        • Rosengren B.
        • Hurt-Camejo E.
        • Bondjers G.
        Binding of low density lipoproteins by proteoglycans synthesized by proliferating and quiescent human arterial smooth muscle cells.
        J Biol Chem. 1993; 268: 14131-14137
        • Nigro J.
        • Ballinger M.L.
        • Dilley R.J.
        • Jennings G.L.R.
        • Wight T.N.
        • Little P.J.
        Fenofibrate modifies human vascular smooth muscle proteoglycans and reduces lipoprotein binding.
        Diabetologia. 2004; 47: 2105-2113
        • Lindholm M.W.
        • Nilsson J.
        • Moses J.
        Low density lipoprotein stimulation of human macrophage proteoglycan secretion.
        Biochem Biophys Res Commun. 2005; 328: 455-460