Age-related increases in circulating inflammatory markers in men are independent of BMI, blood pressure and blood lipid concentrations



      To examine whether age-related increase in concentrations of circulating inflammatory mediators is due to concurrent increases in cardiovascular risk factors or is independent of these.

      Methods and results

      Cytokines (IL-6, IL-18), chemokines (6Ckine, MCP-1, IP-10), soluble adhesion molecules (sICAM-1, sVCAM-1, sE-selectin) and adipokines (adiponectin) were measured in the plasma of healthy male subjects aged 18–84 years (n = 162). These were related to known cardiovascular risk factors (age, BMI, systolic and diastolic blood pressure, plasma total cholesterol, LDL cholesterol, HDL cholesterol and triacylglycerol concentrations) in order to identify significant associations. Plasma concentrations of sVCAM-1, sE-selectin, IL-6, IL-18, MCP-1, 6Ckine, IP-10 and adiponectin, but not sICAM-1, were significantly positively correlated with age, as well as with several other cardiovascular risk factors. The correlations with other risk factors disappeared when age was controlled for. In contrast, the correlations with age remained significant for sVCAM-1, IL-6, MCP-1, 6Ckine and IP-10 when other cardiovascular risk factors were controlled for.


      Plasma concentrations of some inflammatory markers (sVCAM-1, IL-6, MCP-1, 6Ckine, IP-10) are positively correlated with age, independent of other cardiovascular risk factors. This suggests that age-related inflammation may not be driven by recognised risk factors.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Cesari M.
        • Penninx B.
        • Newman A.B.
        • et al.
        Inflammatory markers and onset of cardiovascular events—results from the Health ABC study.
        Circulation. 2003; 108: 2317-2322
        • Ferrucci L.
        • Corsi A.
        • Lauretani F.
        • et al.
        The origins of age-related proinflammatory state.
        Blood. 2005; 105: 2294-2299
        • Bruunsgaard H.
        • Ladelund S.
        • Pedersen A.N.
        • Schroll M.
        • Jorgensen T.
        • Pedersen B.K.
        Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people.
        Clin Exp Immunol. 2003; 132: 24-31
        • Gangemi S.
        • Basile G.
        • Merendino R.A.
        • et al.
        Increased circulating Interleukin-18 levels in centenarians with no signs of vascular disease: another paradox of longevity?.
        Exp Gerontol. 2003; 38: 669-672
        • Krabbe K.S.
        • Pedersen M.
        • Bruunsgaard H.
        Inflammatory mediators in the elderly.
        Exp Gerontol. 2004; 39: 687-699
        • Kritchevsky S.B.
        • Cesari M.
        • Pahor M.
        Inflammatory markers and cardiovascular health in older adults.
        Cardiovasc Res. 2005; 66: 265-275
        • Deo R.
        • Khera A.
        • McGuire D.K.
        • et al.
        Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis.
        J Am Coll Cardiol. 2004; 44: 1812-1818
        • Gerli R.
        • Monti D.
        • Bistoni O.
        • et al.
        Chemokines, sTNF-Rs and sCD30 serum levels in healthy aged people and centenarians.
        Mech Ageing Dev. 2000; 121: 37-46
        • Inadera H.
        • Egashira K.
        • Takemoto M.
        • Ouchi Y.
        • Matsushima K.
        Increase in circulating levels of monocyte chemoattractant protein-1 with aging.
        J Interferon Cytokine Res. 1999; 19: 1179-1182
        • McDermott D.H.
        • Yang Q.
        • Kathiresan S.
        • et al.
        CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the framingham heart study.
        Circulation. 2005; 112: 1113-1120
        • Miles E.A.
        • Thies F.
        • Wallace F.A.
        • et al.
        Influence of age and dietary fish oil on plasma soluble adhesion molecule concentrations.
        Clin Sci. 2001; 100: 91-100
        • Richter V.
        • Rassoul F.
        • Purschwitz K.
        • Hentschel B.
        • Reuter W.
        • Kuntze T.
        Circulating vascular cell adhesion molecules VCAM-1, ICAM-1, and E-selectin in dependence on aging.
        Gerontology. 2003; 49: 293-300
        • Morisaki N.
        • Saito I.
        • Tamura K.
        • et al.
        New indices of ischemic heart disease and aging: Studies on the serum levels of soluble intercellular adhesion molecule-1 (ICAM-1) and soluble vascular cell adhesion molecule-1 (VCAM-1) in patients with hypercholesterolemia and ischemic heart disease.
        Atherosclerosis. 1997; 131: 43-48
        • Cesari M.
        • Penninx B.
        • Newman A.B.
        • et al.
        Inflammatory markers and cardiovascular disease (The Health, Aging and Body Composition [Health ABC] Study).
        Am J Cardiol. 2003; 92: 522-528
        • St-Pierre A.C.
        • Cantin B.
        • Bergeron J.
        • et al.
        Inflammatory markers and long-term risk of ischemic heart disease in men—a 13-year follow-up of the Quebec Cardiovascular Study.
        Atherosclerosis. 2005; 182: 315-321
        • Larsson P.T.
        • Hallerstam S.
        • Rosfors S.
        • Wallen N.H.
        Circulating markers of inflammation are related to carotid artery atherosclerosis.
        Int Angiol. 2005; 24: 43-51
        • Blankenberg S.
        • Barbaux S.
        • Tiret L.
        Adhesion molecules and atherosclerosis.
        Atherosclerosis. 2003; 170: 191-203
        • Yamagami H.
        • Kitagawa K.
        • Hoshi T.
        • et al.
        Associations of serum IL-18 levels with carotid intima-media thickness.
        Arterioscler Thromb Vasc Biol. 2005; 25: 1458-1462
        • Matsumori A.
        • Furukawa Y.
        • Hashimoto T.
        • et al.
        Plasma levels of the monocyte chemotactic and activating factor monocyte chemoattractant protein-1 are elevated in patients with acute myocardial infarction.
        J Mol Cell Cardiol. 1997; 29: 419-423
        • Friedewald W.T.
        • Levy R.I.
        • Fredrick D.S.
        Estimation of concentration of low-density lipoprotein cholesterol in plasma, without use of preparative ultracentrifuge.
        Clin Chem. 1972; 18: 499-502
        • Hogg N.
        • Landis R.C.
        Adhesion molecules in cell-interactions.
        Curr Opin Immunol. 1993; 5: 383-390
        • Stoolman L.M.
        Adhesion molecules controlling lymphocyte migration.
        Cell. 1989; 56: 907-910
        • Silvestro A.
        • Brevetti G.
        • Schiano V.
        • Scopacasa F.
        • Chiariello M.
        Adhesion molecules and cardiovascular risk in peripheral arterial disease—soluble vascular cell adhesion molecule-I improves risk stratification.
        Thromb Haemost. 2005; 93: 559-563
        • Guray U.
        • Erbay A.R.
        • Guray Y.
        • et al.
        Levels of soluble adhesion molecules in various clinical presentations of coronary atherosclerosis.
        Int J Cardiol. 2004; 96: 235-240
        • Cohen H.J.
        • Pieper C.F.
        • Harris T.
        • Rao K.M.K.
        • Currie M.S.
        The association of plasma IL-6 levels with functional disability in community-dwelling elderly.
        J Gerontol Ser A-Biol Sci Med Sci. 1997; 52: M201-M208
        • Tracy R.P.
        • Lemaitre R.N.
        • Psaty B.M.
        • et al.
        Relationship of C-reactive protein to risk of cardiovascular disease in the elderly—results from the Cardiovascular Health Study and the Rural Health Promotion Project.
        Arterioscler Thromb Vasc Biol. 1997; 17: 1121-1127
        • Wei J.
        • Xu H.M.
        • Davies J.L.
        • Hemmings G.P.
        Increase of plasma Il-6 concentration with age in healthy-subjects.
        Life Sci. 1992; 51: 1953-1956
        • Deswal A.
        • Petersen N.J.
        • Feldman A.M.
        • Young J.B.
        • White B.G.
        • Mann D.L.
        Cytokines and cytokine receptors in advanced heart failure—an analysis of the cytokine database from the vesnarinone trial (VEST).
        Circulation. 2001; 103: 2055-2059
        • Tzoulaki I.
        • Murray G.D.
        • Lee A.J.
        • Rumley A.
        • Lowe G.D.O.
        • Fowkes F.G.R.
        C-reactive protein, interleukin-6, and soluble adhesion molecules as predictors of progressive peripheral atherosclerosis in the general population—Edinburgh Artery Study.
        Circulation. 2005; 112: 976-983
        • Vasan R.S.
        • Sullivan L.M.
        • Roubenoff R.
        • et al.
        Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study.
        Circulation. 2003; 107: 1486-1491
        • Blankenberg S.
        • Luc G.
        • Ducimetiere P.
        • et al.
        Interleukin-18 and the risk of coronary heart disease in European men—the Prospective Epidemiological Study of Myocardial Infarction (PRIME).
        Circulation. 2003; 108: 2453-2459
        • Suchanek H.
        • Mysliwska J.
        • Siebert J.
        • et al.
        High serum interleukin-18 concentrations in patients with coronary artery disease and type 2 diabetes mellitus.
        Eur Cytokine Network. 2005; 16: 177-185
        • Aukrust P.
        • Ueland T.
        • Muller F.
        • et al.
        Elevated circulating levels of C–C chemokines in patients with congestive heart failure.
        Circulation. 1998; 97: 1136-1143
        • Kusano K.F.
        • Nakamura K.
        • Kusano H.
        • et al.
        Significance of the level of monocyte chemoattractant protein-1 in human atherosclerosis—assessment in chronic hemodialysis patients.
        Circ J. 2004; 68: 671-676
        • McDermott M.M.
        • Guralnik J.M.
        • Corsi A.
        • et al.
        Patterns of inflammation associated with peripheral arterial disease: the InCHIANTI study.
        Am Heart J. 2005; 150: 276-281
        • de Lemos J.A.
        • Morrow D.A.
        • Sabatine M.S.
        • et al.
        Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes.
        Circulation. 2003; 107: 690-695
        • Serra H.M.
        • Baena-Cagnani C.E.
        • Eberhard Y.
        Is secondary lymphoid-organ chemokine (SLC/CCL21) much more than a constitutive chemokine?.
        Allergy. 2004; 59: 1219-1223
        • Xia M.Q.
        • Bacskai B.J.
        • Knowles R.B.
        • Qin S.X.
        • Hyman B.T.
        Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer's disease.
        J Neuroimmunol. 2000; 108: 227-235
        • Fernandes J.L.
        • Mamoni R.L.
        • Orford J.L.
        • et al.
        Increased Th1 activity in patients with coronary artery disease.
        Cytokine. 2004; 26: 131-137
        • Yung R.L.
        • Mo R.R.
        Aging is associated with increased human T cell CC chemokine receptor gene expression.
        J Interferon Cytokine Res. 2003; 23: 575-582
        • Daimon M.
        • Oizumi T.
        • Saitoh T.
        • et al.
        Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese population—the Funagata study.
        Diabetes Care. 2003; 26: 2015-2020
        • Lindsay R.S.
        • Funahashi T.
        • Hanson R.L.
        • et al.
        Adiponectin and development of type 2 diabetes in the Pima Indian population.
        Lancet. 2002; 360: 57-58
        • Mousavinasab F.
        • Tahtinen T.
        • Jokelainen J.
        • et al.
        Common polymorphisms (single-nucleotide polymorphisms SNP + 45 and SNP + 276) of the adiponectin gene regulate serum adiponectin concentrations and blood pressure in young Finnish men.
        Mol Gen Metabol. 2006; 87: 147-151
        • Nowak L.
        • Adamczak M.
        • Wiecek A.
        Blockade of sympathetic nervous system activity by rilmenidine increases plasma adiponectin concentration in patients with essential hypertension.
        Am J Hyperten. 2005; 18: 1470-1475
        • Arita Y.
        • Kihara S.
        • Ouchi N.
        • et al.
        Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
        Biochem Biophys Res Commun. 1999; 257: 79-83
        • Matsushita K.
        • Yatsuya H.
        • Tamakoshi K.
        • et al.
        Comparison of circulating adiponectin and proinflammatory markers regarding their association with metabolic syndrome in Japanese men.
        Arterioscler Thromb Vasc Biol. 2006; 26: 871-876
        • Ng T.W.K.
        • Watts G.F.
        • Farvid M.S.
        • Chan D.C.
        • Hugh P.
        • Barrett R.
        Adipocytokines and VLDL metabolism—independent regulatory effects of adiponectin, insulin resistance, and fat compartments on VLDL apolipoprotein B-100 kinetics?.
        Diabetes. 2005; 54: 795-802
        • Kazumi T.
        • Awaguchi A.
        • Hirano T.
        • Yoshino G.
        Serum adiponectin is associated with HDL cholesterol, triglycerides, and LDL particle size in young healthy men.
        Diabetes. 2003; 52 ([Abstract]): A212-A1212
        • Schulze M.B.
        • Shai I.
        • Rimm E.B.
        • Li T.C.
        • Rifai N.
        • Hu F.B.
        Adiponectin and future coronary heart disease events among men with type 2 diabetes.
        Diabetes. 2005; 54: 534-539
        • van der Vleuten G.M.
        • van Tits L.J.H.
        • den Heijer M.
        • Lemmers H.
        • Stalenhoef A.F.H.
        • de Graaf J.
        Decreased adiponectin levels in familial combined hyperlipidemia patients contribute to the atherogenic lipid profile.
        J Lipid Res. 2005; 46: 2398-2404
        • Malik I.
        • Danesh J.
        • Whincup P.
        • et al.
        Soluble adhesion molecules and prediction of coronary heart disease: a prospective study and meta-analysis.
        Lancet. 2001; 358: 971-975
        • Ridker P.M.
        • Hennekens C.H.
        • Roitman-Johnson B.
        • Stampfer M.J.
        • Allen J.
        Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy men.
        Lancet. 1998; 351: 88-92
        • Pischon T.
        • Girman C.J.
        • Hotamisligil G.S.
        • Rifai N.
        • Hu F.B.
        • Rimm E.B.
        Plasma adiponectin levels and risk of myocardial infarction in men.
        J Am Med Assoc. 2004; 291: 1730-1737
        • Dunajska K.
        • Milewicz A.
        • Jedrzejuk D.
        • et al.
        Plasma adiponectin concentration in relation to severity of coronary atherosclerosis and cardiovascular risk factors in middle-aged men.
        Endocrine. 2004; 25: 215-221
        • Egashira K.
        Molecular mechanisms mediating inflammation in vascular disease—special reference to monocyte chemoattractant protein-1.
        Hypertension. 2003; 41: 834-841
        • Ridker P.M.
        • Brown N.J.
        • Vaughan D.E.
        • Harrison D.G.
        • Mehta J.L.
        Established and emerging plasma biomarkers in the prediction of first atherothrombotic events.
        Circulation. 2004; 109: 6-19