Advertisement

Large variations in absolute wall shear stress levels within one species and between species

      Abstract

      Wall shear stress (WSS), the frictional force between blood and endothelium, is an important determinant of vascular function. It is generally assumed that WSS remains constant at a reference value of 15 dyn/cm2. In a study of small rodents, we realized that this assumption could not be valid. This review presents an overview of recent studies in large and small animals where shear stress was measured, derived from velocity measurements or otherwise, in large vessels.
      The data show that large variations exist within a single species (human: variation of 2–16 N/m2). Moreover, when we compared different species at the same location within the arterial tree, an inverse relationship between animal size and wall shear stress was noted. When we related WSS to diameter, a unique relationship was derived for all species studied.
      This relationship could not be described by the well-known r3 law of Murray, but by the r2 law introduced by Zamir et al. in 1972.
      In summary, by comparing data from the literature, we have shown that: (i) the assumption of a physiological WSS level of ∼15 dyn/cm2 for all straight vessels in the arterial tree is incorrect; (ii) WSS is not constant throughout the vascular tree; (iii) WSS varies between species; (iv) WSS is inversely related to the vessel diameter. These data support an “r2 law” rather than Murray's r3 law for the larger vessels in the arterial tree.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hogers B.
        • DeRuiter M.C.
        • Gittenberger-de Groot A.C.
        • Poelmann R.E.
        Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo.
        Circ Res. 1997; 80: 473-481
        • Hove J.R.
        • Koster R.W.
        • Forouhar A.S.
        • Acevedo-Bolton G.
        • Fraser S.E.
        • Gharib M.
        Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis.
        Nature. 2003; 421: 172-177
        • Gimbrone Jr., M.A.
        • Topper J.N.
        • Nagel T.
        • Anderson K.R.
        • Garcia-Cardena G.
        Endothelial dysfunction, hemodynamic forces, and atherogenesis.
        Ann N Y Acad Sci. 2000; 902 ([discussion 239–240]): 230-239
        • Cheng C.
        • Tempel D.
        • van Haperen R.
        • et al.
        Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress.
        Circulation. 2006; 113: 2744-2753
        • Malek A.M.
        • Alper S.L.
        • Izumo S.
        Hemodynamic shear stress and its role in atherosclerosis.
        JAMA. 1999; 282: 2035-2042
        • LaBarbera M.
        Principles of design of fluid transport systems in zoology.
        Science. 1990; 249: 992-1000
        • Girerd X.
        • London G.
        • Boutouyrie P.
        • Mourad J.J.
        • Safar M.
        • Laurent S.
        Remodeling of the radial artery in response to a chronic increase in shear stress.
        Hypertension. 1996; 27: 799-803
        • Kamiya A.
        • Bukhari R.
        • Togawa T.
        Adaptive regulation of wall shear stress optimizing vascular tree function.
        Bull Math Biol. 1984; 46: 127-137
        • Rossitti S.
        • Lofgren J.
        Vascular dimensions of the cerebral arteries follow the principle of minimum work.
        Stroke. 1993; 24: 371-377
        • Gnasso A.
        • Carallo C.
        • Irace C.
        • et al.
        Association between wall shear stress and flow-mediated vasodilation in healthy men.
        Atherosclerosis. 2001; 156: 171-176
        • Jiang Y.
        • Kohara K.
        • Hiwada K.
        Low wall shear stress contributes to atherosclerosis of the carotid artery in hypertensive patients.
        Hypertens Res. 1999; 22: 203-207
        • Joannides R.
        • Bizet-Nafeh C.
        • Costentin A.
        • et al.
        Chronic ACE inhibition enhances the endothelial control of arterial mechanics and flow-dependent vasodilatation in heart failure.
        Hypertension. 2001; 38: 1446-1450
        • Taber L.A.
        • Ng S.
        • Quesnel A.M.
        • Whatman J.
        • Carmen C.J.
        Investigating Murray's law in the chick embryo.
        J Biomech. 2001; 34: 121-124
        • Taber L.A.
        An optimization principle for vascular radius including the effects of smooth muscle tone.
        Biophys J. 1998; 74: 109-114
        • Murray C.
        The physiological principle of minimum work. I. The vascular system and the cost of blood volume.
        Proc. Natl Acad Sci USA. 1926; 12: 207-214
        • Murray C.
        The physiological principle of minimum work applied to the angle of the branching of arteries.
        J Gen Physiol. 1926; 9: 835-841
        • Zamir M.
        Shear forces and blood vessel radii in the cardiovascular system.
        J Gen Physiol. 1977; 69: 449-461
        • Gnasso A.
        • Carallo C.
        • Irace C.
        • et al.
        Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects.
        Circulation. 1996; 94: 3257-3262
        • Cheng C.P.
        • Herfkens R.J.
        • Taylor C.A.
        Abdominal aortic hemodynamic conditions in healthy subjects aged 50–70 at rest and during lower limb exercise: in vivo quantification using MRI.
        Atherosclerosis. 2003; 168: 323-331
        • Kornet L.
        • Hoeks A.P.
        • Lambregts J.
        • Reneman R.S.
        Mean wall shear stress in the femoral arterial bifurcation is low and independent of age at rest.
        J Vasc Res. 2000; 37: 112-122
        • Wu S.P.
        • Ringgaard S.
        • Oyre S.
        • et al.
        Wall shear rates differ between the normal carotid, femoral, and brachial arteries: an in vivo MRI study.
        J Magn Reson Imaging. 2004; 19: 188-193
        • Kamiya A.
        • Togawa T.
        Adaptive regulation of wall shear stress to flow change in the canine carotid artery.
        Am J Physiol. 1980; 239: H14-H21
        • Marano G.
        • Palazzesi S.
        • Vergari A.
        • Ferrari A.U.
        Protection by shear stress from collar-induced intimal thickening: role of nitric oxide.
        Arterioscler Thromb Vasc Biol. 1999; 19: 2609-2614
        • Ross G.
        • White F.N.
        • Brown A.W.
        • Kolin A.
        Regional blood flow in the rat.
        J Appl Physiol. 1966; 21: 1273-1275
        • Li Y.H.
        • Reddy A.K.
        • Taffet G.E.
        • et al.
        Doppler evaluation of peripheral vascular adaptations to transverse aortic banding in mice.
        Ultrasound Med Biol. 2003; 29: 1281-1289
        • Dammers R.
        • Stifft F.
        • Tordoir J.H.
        • et al.
        Shear stress depends on vascular territory: comparison between common carotid and brachial artery.
        J Appl Physiol. 2003; 94: 485-489
        • Oyre S.
        • Ringgaard S.
        • Kozerke S.
        • et al.
        Accurate noninvasive quantitation of blood flow, cross-sectional lumen vessel area and wall shear stress by three-dimensional paraboloid modeling of magnetic resonance imaging velocity data.
        J Am Coll Cardiol. 1998; 32: 128-134
        • Samijo S.K.
        • Willigers J.M.
        • Barkhuysen R.
        • et al.
        Wall shear stress in the human common carotid artery as function of age and gender.
        Cardiovasc Res. 1998; 39: 515-522
        • Samijo S.K.
        • Barkhuysen R.
        • Willigers J.M.
        • et al.
        Wall shear stress assessment in the common carotid artery of end-stage renal failure patients.
        Nephron. 2002; 92: 557-563
        • Oshinski J.N.
        • Ku D.N.
        • Mukundan Jr., S.
        • Loth F.
        • Pettigrew R.I.
        Determination of wall shear stress in the aorta with the use of MR phase velocity mapping.
        J Magn Reson Imaging. 1995; 5: 640-647
        • Oyre S.
        • Pedersen E.M.
        • Ringgaard S.
        • Boesiger P.
        • Paaske W.P.
        In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta.
        Eur J Vasc Endovasc Surg. 1997; 13: 263-271
        • Pedersen E.M.
        • Oyre S.
        • Agerbaek M.
        • et al.
        Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo.
        Eur J Vasc Endovasc Surg. 1999; 18: 328-333
      1. Tang BT. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limp exercise: quantification using image-based computer modelling, in review.

        • Gaenzer H.
        • Neumayr G.
        • Marschang P.
        • et al.
        Flow-mediated vasodilation of the femoral and brachial artery induced by exercise in healthy nonsmoking and smoking men.
        J Am Coll Cardiol. 2001; 38: 1313-1319
        • Silber H.A.
        • Ouyang P.
        • Bluemke D.A.
        • et al.
        Why is flow-mediated dilation dependent on arterial size? Assessment of the shear stimulus using phase-contrast magnetic resonance imaging.
        Am J Physiol Heart Circ Physiol. 2005; 288: H822-H828
        • Mitchell G.F.
        • Parise H.
        • Vita J.A.
        • et al.
        Local shear stress and brachial artery flow-mediated dilation: the Framingham Heart Study.
        Hypertension. 2004; 44: 134-139
        • Matsuda K.
        • Teragawa H.
        • Fukuda Y.
        • et al.
        Response of the left anterior descending coronary artery to acetylcholine in patients with chest pain and angiographically normal coronary arteries.
        Am J Cardiol. 2003; 92: 1394-1398
        • Fukuda Y.
        • Teragawa H.
        • Matsuda K.
        • Yamagata T.
        • Matsuura H.
        • Chayama K.
        Tetrahydrobiopterin restores endothelial function of coronary arteries in patients with hypercholesterolaemia.
        Heart. 2002; 87: 264-269
        • Eleuteri E.
        • Scapellato F.
        • Temporelli P.L.
        • Giannuzzi P.
        Evaluation of the left anterior descending coronary artery flow velocity by transthoracic echo-Doppler without contrast enhancement.
        Ital Heart J. 2002; 3: 520-524
        • Liepsch D.
        An introduction to biofluid mechanics–basic models and applications.
        J Biomech. 2002; 35: 415-435
        • Dammers R.
        • Tordoir J.H.
        • Hameleers J.M.
        • Kitslaar P.J.
        • Hoeks A.P.
        Brachial artery shear stress is independent of gender or age and does not modify vessel wall mechanical properties.
        Ultrasound Med Biol. 2002; 28: 1015-1022
        • Long Q.
        • Xu X.Y.
        • Ariff B.
        • Thom S.A.
        • Hughes A.D.
        • Stanton A.V.
        Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study.
        J Magn Reson Imaging. 2000; 11: 299-311
        • Struijk P.C.
        • Stewart P.A.
        • Fernando K.L.
        • et al.
        Wall shear stress and related hemodynamic parameters in the fetal descending aorta derived from color Doppler velocity profiles.
        Ultrasound Med Biol. 2005; 31: 1441-1450
        • Bots M.L.
        • Grobbee D.E.
        • Hofman A.
        • Witteman J.C.
        Common carotid intima-media thickness and risk of acute myocardial infarction: the role of lumen diameter.
        Stroke. 2005; 36: 762-767
        • Pohl U.
        • Holtz J.
        • Busse R.
        • Bassenge E.
        Crucial role of endothelium in the vasodilator response to increased flow in vivo.
        Hypertension. 1986; 8: 37-44
        • Serhatlioglu S.
        • Kiris A.
        • Kocakoc E.
        • Canpolat I.
        • Bozgeyik Z.
        • Han M.C.
        Evaluation of the effects of sildenafil citrate (Viagra) on canine renal artery, carotid and aortic blood flow with the aid of color Doppler sonography.
        Urol Int. 2003; 71: 103-107
        • Lie M.
        • Sejersted O.M.
        • Kiil F.
        Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs.
        Circ Res. 1970; 27: 727-737
        • Lee K.
        • Choi M.
        • Yoon J.
        • Jung J.
        Spectral waveform analysis of major arteries in conscious dogs by Doppler ultrasonography.
        Vet Radiol Ultrasound. 2004; 45: 166-171
        • Sumitra M.
        • Manikandan P.
        • Rao K.V.
        • Nayeem M.
        • Manohar B.M.
        • Puvanakrishnan R.
        Cardiorespiratory effects of diazepam-ketamine, xylazine-ketamine and thiopentone anesthesia in male Wistar rats—a comparative analysis.
        Life Sci. 2004; 75: 1887-1896
        • Janssen B.J.
        • De Celle T.
        • Debets J.J.
        • Brouns A.E.
        • Callahan M.F.
        • Smith T.L.
        Effects of anesthetics on systemic hemodynamics in mice.
        Am J Physiol Heart Circ Physiol. 2004; 287: H1618-H1624
        • Uylings H.B.
        Optimization of diameters and bifurcation angles in lung and vascular tree structures.
        Bull Math Biol. 1977; 39: 509-520
        • Gafiychuk V.V.
        • Lubashevsky I.A.
        On the principles of the vascular network branching.
        J Theor Biol. 2001; 212: 1-9
        • Zamir M.
        • Sinclair P.
        • Wonnacott T.H.
        Relation between diameter and flow in major branches of the arch of the aorta.
        J Biomech. 1992; 25: 1303-1310
        • Karau K.L.
        • Krenz G.S.
        • Dawson C.A.
        Branching exponent heterogeneity and wall shear stress distribution in vascular trees.
        Am J Physiol Heart Circ Physiol. 2001; 280: H1256-H1263
        • Morris T.E.
        • Mattox P.A.
        • Shipley G.D.
        • Wagner C.R.
        • Hosenpud J.D.
        The pattern of cytokine messenger RNA expression in human aortic endothelial cells is different from that of human umbilical vein endothelial cells.
        Transpl Immunol. 1993; 1: 137-142
        • Chen B.P.
        • Li Y.S.
        • Zhao Y.
        • et al.
        DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress.
        Physiol Genomics. 2001; 7: 55-63
        • Garcia-Cardena G.
        • Comander J.
        • Anderson K.R.
        • Blackman B.R.
        • Gimbrone Jr., M.A.
        Biomechanical activation of vascular endothelium as a determinant of its functional phenotype.
        Proc Natl Acad Sci USA. 2001; 98: 4478-4485
        • Mochizuki S.
        • Vink H.
        • Hiramatsu O.
        • et al.
        Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release.
        Am J Physiol Heart Circ Physiol. 2003; 285: H722-H726
        • Gouverneur M.
        • Spaan J.A.
        • Pannekoek H.
        • Fontijn R.D.
        • Vink H.
        Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx.
        Am J Physiol Heart Circ Physiol. 2006; 290: H458-H462
        • Tzima E.
        • Irani-Tehrani M.
        • Kiosses W.B.
        • et al.
        A mechanosensory complex that mediates the endothelial cell response to fluid shear stress.
        Nature. 2005; 437: 426-431
        • Cheng C.
        • van Haperen R.
        • de Waard M.
        • et al.
        Shear stress affects the intracellular distribution of eNOS: direct demonstration by a novel in vivo technique.
        Blood. 2005; 106: 3691-3698
        • Illi B.
        • Nanni S.
        • Scopece A.
        • et al.
        Shear stress-mediated chromatin remodeling provides molecular basis for flow-dependent regulation of gene expression.
        Circ Res. 2003; 93: 155-161
        • Illi B.
        • Scopece A.
        • Nanni S.
        • et al.
        Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress.
        Circ Res. 2005; 96: 501-508
        • Zderic V.
        • Keshavarzi A.
        • Noble M.L.
        • et al.
        Hemorrhage control in arteries using high-intensity focused ultrasound: a survival study.
        Ultrasonics. 2006; 44: 46-53
        • Tronc F.
        • Wassef M.
        • Esposito B.
        • et al.
        Role of NO in flow-induced remodeling of the rabbit common carotid artery.
        Arterioscler Thromb Vasc Biol. 1996; 16: 1256-1262
        • Walpola P.L.
        • Gotlieb A.I.
        • Langille B.L.
        Monocyte adhesion and changes in endothelial cell number, morphology, and F-actin distribution elicited by low shear stress in vivo.
        Am J Pathol. 1993; 142: 1392-1400
        • Langille B.L.
        • Bendeck M.P.
        • Keeley F.W.
        Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow.
        Am J Physiol. 1989; 256: H931-H939
        • Sho E.
        • Nanjo H.
        • Sho M.
        • et al.
        Arterial enlargement, tortuosity, and intimal thickening in response to sequential exposure to high and low wall shear stress.
        J Vasc Surg. 2004; 39: 601-612
        • Masuda H.
        • Zhuang Y.J.
        • Singh T.M.
        • et al.
        Adaptive remodeling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement.
        Arterioscler Thromb Vasc Biol. 1999; 19: 2298-2307
        • Lu X.
        • Zhao J.B.
        • Wang G.R.
        • Gregersen H.
        • Kassab G.S.
        Remodeling of the zero-stress state of femoral arteries in response to flow overload.
        Am J Physiol Heart Circ Physiol. 2001; 280: H1547-H1559
        • Ibrahim J.
        • Miyashiro J.K.
        • Berk B.C.
        Shear stress is differentially regulated among inbred rat strains.
        Circ Res. 2003; 92: 1001-1009
        • Miyashiro J.K.
        • Poppa V.
        • Berk B.C.
        Flow-induced vascular remodeling in the rat carotid artery diminishes with age.
        Circ Res. 1997; 81: 311-319
        • Tohda K.
        • Masuda H.
        • Kawamura K.
        • Shozawa T.
        Difference in dilatation between endothelium-preserved and -desquamated segments in the flow-loaded rat common carotid artery.
        Arterioscler Thromb. 1992; 12: 519-528
        • Hartley C.J.
        • Reddy A.K.
        • Madala S.
        • et al.
        Hemodynamic changes in apolipoprotein E-knockout mice.
        Am J Physiol Heart Circ Physiol. 2000; 279: H2326-H2334
        • Korshunov V.A.
        • Berk B.C.
        Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening.
        Arterioscler Thromb Vasc Biol. 2003; 23: 2185-2191
        • Castier Y.
        • Brandes R.P.
        • Leseche G.
        • Tedgui A.
        • Lehoux S.
        p47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling.
        Circ Res. 2005; 97: 533-540
        • Rudic R.D.
        • Bucci M.
        • Fulton D.
        • Segal S.S.
        • Sessa W.C.
        Temporal events underlying arterial remodeling after chronic flow reduction in mice: correlation of structural changes with a deficit in basal nitric oxide synthesis.
        Circ Res. 2000; 86: 1160-1166
        • Sullivan C.J.
        • Hoying J.B.
        Flow-dependent remodeling in the carotid artery of fibroblast growth factor-2 knockout mice.
        Arterioscler Thromb Vasc Biol. 2002; 22: 1100-1105
        • Schiffers P.M.
        • Henrion D.
        • Boulanger C.M.
        • et al.
        Altered flow-induced arterial remodeling in vimentin-deficient mice.
        Arterioscler Thromb Vasc Biol. 2000; 20: 611-616